Oc-windows.ru

IT Новости из мира ПК
7 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Функция мобр в excel

Обратная матрица в Excel

Подробно рассмотрим особенности вычисления обратной матрицы в Excel и примеры использования функции МОБР.

В первую очередь освежим в памяти, что обратная матрица — это матрица (записывается как A -1 ), при умножении которой на исходную матрицу (A) дает единичную матрицу (E), другими словами выполняется формула:


Из определения следует важное свойство, что обратная матрица определена только для квадратных (т.е. число строк и столбцов совпадает) и невырожденных матриц (т.е. определитель отличен от нуля).

Как найти обратную матрицу в Excel?

В отличие от транспонированной матрицы, вычислить обратную матрицу технически несколько сложнее.
Посчитать обратную матрицу можно через построение матриц алгебраических дополнений и определителя исходной матрицы.
Однако сложность вычисления по данному алгоритму имеет квадратичную зависимость от порядка матрицы.
К примеру, для обращения квадратной матрицы 3-го порядка нам необходимо будет дополнительно сделать 9 матриц алгебраических дополнений, транспонировать итоговую созданную матрицу и поэлементно разделить на определитель начальной матрицы, что затрудняет возможность подобного расчета в Excel.
Поэтому воспользуемся стандартной функцией МОБР, которая позволит найти обратную матрицу:

Функция МОБР

Синтаксис и описание функции МОБР в Excel:

МОБР(массив)
Возвращает обратную матрицу (матрица хранится в массиве).

  • Массив(обязательный аргумент) — числовой массив, содержащий матрицу с одинаковым числом столбцов и строк.

Рассмотрим расчет обратной матрицы посредством функции МОБР на конкретном примере.
Предположим у нас имеется следующая квадратная матрица 3-го порядка:


Выделяем диапазон пустых ячеек E2:G4, куда мы в дальнейшем поместим обратную матрицу.
Не снимая выделения ячеек вводим формулу =МОБР(A2:C4) и нажимаем комбинацию клавиш Ctrl + Shift + Ввод для расчета формулы массива по данному диапазону:


При работе с функцией МОБР могут возникнуть следующие ошибки:

  • В том случае, когда исходная матрица является вырожденной (определитель равен нулю), то функция вернет ошибку #ЧИСЛО!;
  • Если число строк и столбцов в матрице не совпадает, то функция возвратит ошибку #ЗНАЧ!;
  • Функция также вернет ошибку #ЗНАЧ!, если хотя бы один из элементов матрицы является пустым или записан в текстовом виде.

Вычисление обратной матрицы в Microsoft Excel

Приложение Excel выполняет целый ряд вычислений, связанных с матричными данными. Программа обрабатывает их, как диапазон ячеек, применяя к ним формулы массива. Одно из таких действий – это нахождение обратной матрицы. Давайте выясним, что представляет собой алгоритм данной процедуры.

Выполнение расчетов

Вычисление обратной матрицы в Excel возможно только в том случае, если первичная матрица является квадратной, то есть количество строк и столбцов в ней совпадает. Кроме того, её определитель не должен быть равен нулю. Для вычисления применяется функция массива МОБР. Давайте на простейшем примере рассмотрим подобное вычисление.

Читать еще:  Excel 2020 лекции

Расчет определителя

Прежде всего, вычислим определитель, чтобы понять, имеет первичный диапазон обратную матрицу или нет. Это значение рассчитывается при помощи функции МОПРЕД.

  1. Выделяем любую пустую ячейку на листе, куда будут выводиться результаты вычислений. Жмем на кнопку «Вставить функцию», размещенную около строки формул.

Запускается Мастер функций. В перечне записей, который он представляет, ищем «МОПРЕД», выделяем этот элемент и жмем на кнопку «OK».

Открывается окно аргументов. Ставим курсор в поле «Массив». Выделяем весь диапазон ячеек, в котором расположена матрица. После того, как его адрес появился в поле, жмем на кнопку «OK».

Расчет обратной матрицы

Теперь можно преступить к непосредственному расчету обратной матрицы.

    Выделяем ячейку, которая должна стать верхней левой ячейкой обратной матрицы. Переходим в Мастер функций, кликнув по значку слева от строки формул.

В открывшемся списке выбираем функцию МОБР. Жмем на кнопку «OK».

Как видим, появилось значение только в одной ячейке, в которой была формула. Но нам нужна полноценная обратная функция, поэтому следует скопировать формулу в другие ячейки. Выделяем диапазон, равнозначный по горизонтали и вертикали исходному массиву данных. Жмем на функциональную клавишу F2, а затем набираем комбинацию Ctrl+Shift+Enter. Именно последняя комбинация предназначена для обработки массивов.

  • Как видим, после этих действий обратная матрица вычислена в выделенных ячейках.
  • На этом расчет можно считать завершенным.

    Если вы производите расчет определителя и обратной матрицы только при помощи ручки и бумаги, то над этим вычислением, в случае работы над сложным примером, можно ломать голову очень долго. Но, как видим, в программе Эксель данные вычисления производятся очень быстро, независимо от сложности поставленной задачи. Для человека, который знаком с алгоритмом подобных расчетов в этом приложении, все вычисление сводится к чисто механическим действиям.

    Отблагодарите автора, поделитесь статьей в социальных сетях.

    Вычисление обратной матрицы в EXCEL

    Для вычисления обратной матрицы в MS EXCEL существует специальная функция МОБР() или англ. MINVERSE .

    Понятие обратной матрицы определено только для квадратных матриц, определитель которых отличен от нуля.

    СОВЕТ : О нахождении определителя матрицы читайте статью Вычисление определителя матрицы в MS EXCEL

    Матрица А -1 называется обратной для исходной матрицы А порядка n, если справедливы равенства А -1 *А=Е и А*А -1 =Е, где Е единичная матрица порядка n.

    Для вычисления обратной матрицы в MS EXCEL существует специальная функция МОБР() .

    Если элементы исходной матрицы 2 х 2 расположены в диапазоне А8:В9 , то для получения транспонированной матрицы нужно (см. файл примера ):

    • выделить диапазон 2 х 2, который не пересекается с исходным диапазоном А8:В9 , например, Е8:F9
    • в Cтроке формул ввести формулу = МОБР (A8:B9) и нажать комбинацию клавиш CTRL+SHIFT+ENTER , т.е. нужно ввести ее как формулу массива (формулу можно ввести прямо в ячейку, предварительно нажав клавишу F2 )
    Читать еще:  Метод иерархий в excel

    Если матрица большей размерности, то перед вводом формулы нужно выделить соответственно больший диапазон ячеек.

    Массив может быть задан не только как интервал ячеек, например A8:B9 , но и как массив констант , например =МОБР(<5;4: 3;2>) . Запись с использованием массива констант позволяет не указывать элементы в отдельных ячейках, а разместить их в ячейке вместе с функцией. Массив в этом случае указывается по строкам: например, сначала первая строка 5;4, затем через двоеточие записывается следующая строка 3;2. Элементы отделяются точкой с запятой.

    Ссылка на массив также может быть указана как ссылка на именованный диапазон .

    Некоторые квадратные матрицы не могут быть обращены: в таких случаях функция МОБР() возвращает значение ошибки #ЧИСЛО!. Матрицы не могут быть обращены, у которых определитель равен 0.

    Если функция МОБР() вернула значение ошибки #ЗНАЧ!, то либо число строк в массиве не равно числу столбцов, либо какая-либо из ячеек в массиве пуста или содержит текст. Т.е. функция МОБР() пустую ячейку воспринимает не как содержащую 0 (как например, это делает СУММ() ), а как ошибочное значение.

    Вычисление обратной матрицы с помощью матрицы из алгебраических дополнений

    СОВЕТ : Этот раздел стоит читать только продвинутым пользователям MS EXCEL. Кроме того материал представляет только академический интерес, т.к. есть функция МОБР() .

    В файле примера приведен расчет обратной матрицы 3-го порядка через матрицу алгебраических дополнений.

    Порядок действий при вычислении обратной матрицы:

    • Вычисляем определитель матрицы А (далее — Det(A)) и убеждаемся, что он отличен от нуля (в противном случае матрица А необратима)
    • Строим матрицу из алгебраических дополнений элементов исходной матрицы
    • Транспонируем матрицу из алгебраических дополнений
    • Умножаем каждый элемент транспонированной матрицы из алгебраических дополнений на 1/Det(A) и получаем обратную матрицу

    В качестве проверки можно перемножить исходную и обратную матрицы . В результате должна получиться единичная матрица.

    Примеры использования функции МОБР в Excel матрицах

    Функция МОБР – это вычислительное определение матрицы. Она возвращает обратную матрицу для матрицы, хранящейся в массиве. Обратные матрицы, как и определители, обычно используются для решения систем уравнений с несколькими неизвестными. Некоторые квадратные матрицы не могут быть обращены: в таких случаях функция МОБР возвращает значение ошибки #ЧИСЛО!. Определитель такой матрицы равен = 0.

    Описание использования функции МОБР в Excel

    Как использовать функцию МОБР в Excel рассмотрим ниже на примерах. Но сначала ознакомимся как устроена данная функции.

    Читать еще:  Как посчитать количество нулей в excel

    Аргумент функции МОБР – это массив. Он может быть задан как диапазон ячеек, например A1:C3 как массив констант, например <1;2;3:4;5;6:7;8;9>или как имя диапазона или массива. В случае, если хотя бы одна из ячеек массива пуста или содержит текст, функция возвращает значение ошибки #ЗНАЧ!

    Массив должен иметь равное количество строк и столбцов. В случае, если они не равны, то функция МОБР также возвращает значение ошибки #ЗНАЧ!

    Формулы, которые возвращают массивы, должны быть введены как формулы массива.

    Для вывода обратного массива необходимо после выбора диапазона для данной функции нажать комбинацию клавиш Ctrl+Shift+Enter, а не просто Enter.

    Функция МОБР производит вычисления с точностью до 16 значащих цифр, что может привести к незначительным ошибкам округления. Рассмотрим применение данной функции на конкретных примерах.

    Поиск обратной матрицы в Excel с помощью функции МОБР

    Пример 1. Используя пакет Excel, найти обратную матрицу для матрицы, приведенной в таблице 1.

    Исходные данные
    12
    34

    Для решения данной задачи открывает пакет Excel, в произвольной ячейке вводим исходные данные, дальше выбираем функцию МОБР. В качестве массива выбираем диапазон с введенными данными и контролируем полученный результат. В Excel общий вид функции выглядит следующим образом:

    Рисунок 1 – Результат расчета.

    Как найти валовый показатель по матрице взаимосвязей?

    Пример 2. Связь между тремя отраслями представлена матрицей прямых затрат А. Спрос (конечный продукт) задан вектором X. Найти валовой выпуск продукции отраслей Х. Описать используемые формулы, представить распечатку со значениями и с формулами.

    Исходные данные приведены на рисунке 2:

    Рисунок 2 – Исходные данные.

    Данная задача связана с определением объема производства каждой из N отраслей, чтобы удовлетворить все потребности в продукции данной отрасли. При этом каждая отрасль выступает и как производитель некоторой продукции и как потребитель своей и произведенной другими отраслями продукции. Задача межотраслевого баланса – отыскание такого вектора валового выпуска X, который при известной матрице прямых затрат обеспечивает заданный вектор конечного продукта Y.

    Матричное решение данной задачи:

    где Е – единична матрица.

    Для решения задачи в примере используем следующие 4 функции для работы с матрицами в Excel:

    1. МОБР – нахождение обратной матрицы.
    2. МУМНОЖ – умножение матриц.
    3. МОПРЕД – нахождение определителя матрицы.
    4. МЕДИН – нахождение единичной матрицы.

    Результаты приведены на рисунке 3:

    Рисунок 3 – Результат вычислений.

    Функция МОБР возвращает ошибку #ЧИСЛО!

    Пример 3. Найти обратную матрицу для матрицы, приведенной в таблице 2.

    Исходные данные
    124
    248
    4816

    Результат решения приведен на рисунке 4. Видно, что определитель данной матрицы равен 0, поэтому функция МОБР выводит в результате значение #ЧИСЛО!.

    Ссылка на основную публикацию
    Adblock
    detector