Oc-windows.ru

IT Новости из мира ПК
6 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Как сделать гиперболу в excel

Построение параболы в Microsoft Excel

Построение параболы является одной из известных математических операций. Довольно часто она применяется не только в научных целях, но и в чисто практических. Давайте узнаем, как совершить данную процедуру при помощи инструментария приложения Excel.

Создание параболы

Парабола представляет собой график квадратичной функции следующего типа f(x)=ax^2+bx+c. Одним из примечательных его свойств является тот факт, что парабола имеет вид симметричной фигуры, состоящей из набора точек равноудаленных от директрисы. По большому счету построение параболы в среде Эксель мало чем отличается от построения любого другого графика в этой программе.

Создание таблицы

Прежде всего, перед тем, как приступить к построению параболы, следует построить таблицу, на основании которой она и будет создаваться. Для примера возьмем построение графика функции f(x)=2x^2+7.

  1. Заполняем таблицу значениями x от -10 до 10 с шагом 1. Это можно сделать вручную, но легче для указанных целей воспользоваться инструментами прогрессии. Для этого в первую ячейку столбца «X» заносим значение «-10». Затем, не снимая выделения с данной ячейки, переходим во вкладку «Главная». Там щелкаем по кнопке «Прогрессия», которая размещена в группе «Редактирование». В активировавшемся списке выбираем позицию «Прогрессия…».

Выполняется активация окна регулировки прогрессии. В блоке «Расположение» следует переставить кнопку в позицию «По столбцам», так как ряд «X» размещается именно в столбце, хотя в других случаях, возможно, нужно будет выставить переключатель в позицию «По строкам». В блоке «Тип» оставляем переключатель в позиции «Арифметическая».

В поле «Шаг» вводим число «1». В поле «Предельное значение» указываем число «10», так как мы рассматриваем диапазон x от -10 до 10 включительно. Затем щелкаем по кнопке «OK».

После этого действия весь столбец «X» будет заполнен нужными нам данными, а именно числами в диапазоне от -10 до 10 с шагом 1.

Только вместо значения x подставляем адрес первой ячейки столбца «X», который мы только что заполнили. Поэтому в нашем случае выражение примет вид:

Теперь нам нужно скопировать формулу и на весь нижний диапазон данного столбца. Учитывая основные свойства Excel, при копировании все значения x будут поставлены в соответствующие ячейки столбца «f(x)» автоматически. Для этого ставим курсор в правый нижний угол ячейки, в которой уже размещена формула, записанная нами чуть ранее. Курсор должен преобразоваться в маркер заполнения, имеющий вид маленького крестика. После того, как преобразование произошло, зажимаем левую кнопку мыши и тянем курсор вниз до конца таблицы, после чего отпускаем кнопку.

На этом формирования таблицы можно считать законченным и переходить непосредственно к построению графика.

Построение графика

Как уже было сказано выше, теперь нам предстоит построить сам график.

    Выделяем таблицу курсором, зажав левую кнопку мыши. Перемещаемся во вкладку «Вставка». На ленте в блоке «Диаграммы» щелкаем по кнопке «Точечная», так как именно данный вид графика больше всего подходит для построения параболы. Но и это ещё не все. После нажатия на вышеуказанную кнопку открывается список типов точечных диаграмм. Выбираем точечную диаграмму с маркерами.

  • Как видим, после этих действий, парабола построена.
  • Редактирование диаграммы

    Теперь можно немного отредактировать полученный график.

      Если вы не хотите, чтобы парабола отображалась в виде точек, а имела более привычный вид кривой линии, которая соединяет эти точки, кликните по любой из них правой кнопкой мыши. Открывается контекстное меню. В нем нужно выбрать пункт «Изменить тип диаграммы для ряда…».

    Открывается окно выбора типов диаграмм. Выбираем наименование «Точечная с гладкими кривыми и маркерами». После того, как выбор сделан, выполняем щелчок по кнопке «OK».

  • Теперь график параболы имеет более привычный вид.
  • Кроме того, можно совершать любые другие виды редактирования полученной параболы, включая изменение её названия и наименований осей. Данные приёмы редактирования не выходят за границы действий по работе в Эксель с диаграммами других видов.

    Как видим, построение параболы в Эксель ничем принципиально не отличается от построения другого вида графика или диаграммы в этой же программе. Все действия производятся на основе заранее сформированной таблицы. Кроме того, нужно учесть, что для построения параболы более всего подходит точечный вид диаграммы.

    Отблагодарите автора, поделитесь статьей в социальных сетях.

    Как построить график функции в Microsoft Excel

    Построение графика зависимости функции является характерной математической задачей. Все, кто хотя бы на уровне школы знаком с математикой, выполняли построение таких зависимостей на бумаге. В графике отображается изменение функции в зависимости от значения аргумента. Современные электронные приложения позволяют осуществить эту процедуру за несколько кликов мышью. Microsoft Excel поможет вам в построении точного графика для любой математической функции. Давайте разберем по шагам, как построить график функции в excel по её формуле

    Построение графика линейной функции в Excel

    Построение графиков в Excel 2016 значительно улучшилось и стало еще проще чем в предыдущих версиях. Разберем пример построения графика линейной функции y=kx+b на небольшом интервале [-4;4].

    Подготовка расчетной таблицы

    В таблицу заносим имена постоянных k и b в нашей функции. Это необходимо для быстрого изменения графика без переделки расчетных формул.

    Установка шага значений аргумента функции

    Далее строим таблицу значений линейной функции:

    • В ячейки A5 и A6 вводим соответственно обозначения аргумента и саму функцию. Запись в виде формулы будет использована в качестве названия диаграммы.
    • Вводим в ячейки B5 и С5 два значения аргумента функции с заданным шагом (в нашем примере шаг равен единице).
    • Выделяем эти ячейки.
    • Наводим указатель мыши на нижний правый угол выделения. При появлении крестика (смотри рисунок выше), зажимаем левую кнопку мыши и протягиваем вправо до столбца J.
    Читать еще:  Назовите функции ms excel

    Ячейки автоматически будут заполнены числами, значения которых различаются заданным шагом.

    Автозаполнение значений аргумента функции

    Далее в строку значений функции в ячейку B6 записываем формулу =$B3*B5+$D3

    Внимание! Запись формулы начинается со знака равно(=). Адреса ячеек записываются на английской раскладке. Обратите внимание на абсолютные адреса со знаком доллара.

    Чтобы завершить ввод формулы нажмите клавишу Enter или галочку слева от строки формул вверху над таблицей.

    Копируем эту формулу для всех значений аргумента. Протягиваем вправо рамку от ячейки с формулой до столбца с конечными значениями аргумента функции.

    Копирование формулы

    Построение графика функции

    Выделяем прямоугольный диапазон ячеек A5:J6.

    Выделение таблицы функции

    Переходим на вкладку Вставка в ленте инструментов. В разделе Диаграмма выбираем Точечная с гладкими кривыми (см. рисунок ниже).Получим диаграмму.

    Построение диаграммы типа «График»

    После построения координатная сетка имеет разные по длине единичные отрезки. Изменим ее перетягивая боковые маркеры до получения квадратных клеток.

    Теперь можно ввести новые значения постоянных k и b для изменения графика. И видим, что при попытке изменить коэффициент график остается неизменным, а меняются значения на оси. Исправляем. Кликните на диаграмме, чтобы ее активировать. Далее на ленте инструментов во вкладке Работа с диаграммами на вкладке Конструктор выбираем Добавить элемент диаграммы — Оси — Дополнительные параметры оси..

    Вход в режим изменения параметров координатных осей

    В правой части окна появиться боковая панель настроек Формат оси.

    Редактирование параметров координатной оси

    • Кликните на раскрывающийся список Параметры оси.
    • Выберите Вертикальная ось (значений).
    • Кликните зеленый значок диаграммы.
    • Задайте интервал значений оси и единицы измерения (обведено красной рамкой). Ставим единицы измерения Максимум и минимум (Желательно симметричные) и одинаковые для вертикальной и горизонтальной осей. Таким образом, мы делаем мельче единичный отрезок и соответственно наблюдаем больший диапазон графика на диаграмме.И главную единицу измерения — значение 1.
    • Повторите тоже для горизонтальной оси.

    Теперь, если поменять значения K и b , то получим новый график с фиксированной сеткой координат.

    Построение графиков других функций

    Теперь, когда у нас есть основа в виде таблицы и диаграммы, можно строить графики других функций, внося небольшие корректировки в нашу таблицу.

    Квадратичная функция y=ax 2 +bx+c

    Выполните следующие действия:

    • В первой строке меняем заголовок
    • В третьей строке указываем коэффициенты и их значения
    • В ячейку A6 записываем обозначение функции
    • В ячейку B6 вписываем формулу =$B3*B5*B5+$D3*B5+$F3
    • Копируем её на весь диапазон значений аргумента вправо

    График квадратичной функции

    Кубическая парабола y=ax 3

    Для построения выполните следующие действия:

    • В первой строке меняем заголовок
    • В третьей строке указываем коэффициенты и их значения
    • В ячейку A6 записываем обозначение функции
    • В ячейку B6 вписываем формулу =$B3*B5*B5*B5
    • Копируем её на весь диапазон значений аргумента вправо

    График кубической параболы

    Гипербола y=k/x

    Для построения гиперболы заполните таблицу вручную (смотри рисунок ниже). Там где раньше было нулевое значение аргумента оставляем пустую ячейку.

    Далее выполните действия:

    • В первой строке меняем заголовок.
    • В третьей строке указываем коэффициенты и их значения.
    • В ячейку A6 записываем обозначение функции.
    • В ячейку B6 вписываем формулу =$B3/B5
    • Копируем её на весь диапазон значений аргумента вправо.
    • Удаляем формулу из ячейки I6.

    Для корректного отображения графика нужно поменять для диаграммы диапазон исходных данных, так как в этом примере он больше чем в предыдущих.

    • Кликните диаграмму
    • На вкладке Работа с диаграммами перейдите в Конструктор и в разделе Данные нажмите Выбрать данные.
    • Откроется окно мастера ввода данных
    • Выделите мышкой прямоугольный диапазон ячеек A5:P6
    • Нажмите ОК в окне мастера.

    График гиперболы

    Построение тригонометрических функций sin(x) и cos(x)

    Рассмотрим пример построения графика тригонометрической функции y=a*sin(b*x).
    Сначала заполните таблицу как на рисунке ниже

    Таблица значений функции sin(x)

    В первой строке записано название тригонометрической функции.
    В третьей строке прописаны коэффициенты и их значения. Обратите внимание на ячейки, в которые вписаны значения коэффициентов.
    В пятой строке таблицы прописываются значения углов в радианах. Эти значения будут использоваться для подписей на графике.
    В шестой строке записаны числовые значения углов в радианах. Их можно прописать вручную или используя формулы соответствующего вида =-2*ПИ(); =-3/2*ПИ(); =-ПИ(); =-ПИ()/2; …
    В седьмой строке записываются расчетные формулы тригонометрической функции.

    Запись расчетной формулы функции sin(x) в Excel

    В нашем примере =$B$3*SIN($D$3*B6). Адреса B3 и D3 являются абсолютными. Их значения – коэффициенты a и b, которые по умолчанию устанавливаются равными единице.
    После заполнения таблицы приступаем к построению графика.

    Выделяем диапазон ячеек А6:J7. В ленте выбираем вкладку Вставка в разделе Диаграммы указываем тип Точечная и вид Точечная с гладкими кривыми и маркерами.

    Построение диаграммы Точечная с гладкими кривыми

    В итоге получим диаграмму.

    График sin(x) после вставки диаграммы

    Теперь настроим правильное отображение сетки, так чтобы точки графика лежали на пересечении линий сетки. Выполните последовательность действий Работа с диаграммами –Конструктор – Добавить элемент диаграммы – Сетка и включите три режима отображения линий как на рисунке.

    Настройка сетки при построении графика

    Теперь зайдите в пункт Дополнительные параметры линий сетки. У вас появится боковая панель Формат области построения. Произведем настройки здесь.

    Кликните в диаграмме на главную вертикальную ось Y (должна выделится рамкой). В боковой панели настройте формат оси как на рисунке.


    Кликните главную горизонтальную ось Х (должна выделится) и также произведите настройки согласно рисунку.

    Настройка формата горизонтальной оси Х графика функции

    Теперь сделаем подписи данных над точками. Снова выполняем Работа с диаграммами –Конструктор – Добавить элемент диаграммы – Подписи данных – Сверху. У вас подставятся значения числами 1 и 0, но мы заменим их значениями из диапазона B5:J5.
    Кликните на любом значении 1 или 0 (рисунок шаг 1) и в параметрах подписи поставьте галочку Значения из ячеек (рисунок шаг 2). Вам будет сразу же предложено указать диапазон с новыми значениями (рисунок шаг 3). Указываем B5:J5.

    Читать еще:  Excel в ворд онлайн


    Вот и все. Если сделали правильно, то и график будет замечательным. Вот такой.

    Чтобы получить график функции cos(x), замените в расчетной формуле и в названии sin(x) на cos(x).

    Аналогичным способом можно строить графики других функций. Главное правильно записать вычислительные формулы и построить таблицу значений функции. Надеюсь, что вам была полезна данная информация.

    PS: Интересные факты про логотипы известных компаний

    Дорогой читатель! Вы посмотрели статью до конца. Получили вы ответ на свой вопрос? Напишите в комментариях пару слов. Если ответа не нашли, укажите что искали.

    График функции в Excel: как построить?

    В MS Office Excel можно построить график математической функции. Рассмотрим построение графиков на примерах.

    Пример 1

    Дана функция:

    Нужно построить ее график на промежутке [-5;5] с шагом равным 1.

    Создание таблицы

    Создадим таблицу, первый столбец назовем переменная x (ячейка А1), второй — переменная y (ячейка В1). Для удобства в ячейку В1 запишем саму функцию, чтобы было понятно, какой график будем строить. Введем значения -5, -4 в ячейки А2 и А3 соответственно, выделим обе ячейки и скопируем вниз. Получим последовательность от -5 до 5 с шагом 1.

    Вычисление значений функции

    Нужно вычислить значения функции в данных точках. Для этого в ячейке В2 создадим формулу, соответствующую заданной функции, только вместо x будем вводить значение переменной х, находящееся в ячейке слева (-5).

    Важно: для возведения в степень используется знак ^, который можно получить с помощью комбинации клавиш Shift+6 на английской раскладке клавиатуры. Обязательно между коэффициентами и переменной нужно ставить знак умножения * (Shift+8).

    Ввод формулы завершаем нажатием клавиши Enter. Мы получим значение функции в точке x=-5. Скопируем полученную формулу вниз.

    Мы получили последовательность значений функции в точках на промежутке [-5;5] с шагом 1.

    Построение графика

    Выделим диапазон значений переменной x и функции y. Перейдем на вкладку Вставка и в группе Диаграммы выберем Точечная (можно выбрать любую из точечных диаграмм, но лучше использовать вид с гладкими кривыми).

    Мы получили график данной функции. Используя вкладки Конструктор, Макет, Формат, можно изменить параметры графика.

    Пример 2

    Даны функции:

    и y=50x+2. Нужно построить графики этих функций в одной системе координат.

    Создание таблицы и вычисление значений функций

    Таблицу для первой функции мы уже построили, добавим третий столбец — значения функции y=50x+2 на том же промежутке [-5;5]. Заполняем значения этой функции. Для этого в ячейку C2 вводим формулу, соответствующую функции, только вместо x берем значение -5, т.е. ячейку А2. Копируем формулу вниз.

    Мы получили таблицу значений переменной х и обеих функций в этих точках.

    Построение графиков

    Для построения графиков выделяем значения трёх столбцов, на вкладке Вставка в группе Диаграммы выбираем Точечная.

    Мы получили графики функций в одной системе координат. Используя вкладки Конструктор, Макет, Формат, можно изменить параметры графиков.

    Последний пример удобно использовать, если нужно найти точки пересечения функций с помощью графиков. При этом можно изменить значения переменной x, выбрать другой промежуток или взять другой шаг (меньше или больше, чем 1). При этом столбцы В и С менять не нужно, диаграмму тоже. Все изменения произойдут сразу же после ввода других значений переменной x. Такая таблица является динамической.

    Кратко об авторе:

    Шамарина Татьяна Николаевна — учитель физики, информатики и ИКТ, МКОУ «СОШ», с. Саволенка Юхновского района Калужской области. Автор и преподаватель дистанционных курсов по основам компьютерной грамотности, офисным программам. Автор статей, видеоуроков и разработок.

    Спасибо за Вашу оценку. Если хотите, чтобы Ваше имя
    стало известно автору, войдите на сайт как пользователь
    и нажмите Спасибо еще раз. Ваше имя появится на этой стрнице.

    Есть мнение?
    Оставьте комментарий

    Понравился материал?
    Хотите прочитать позже?
    Сохраните на своей стене и
    поделитесь с друзьями

    Вы можете разместить на своём сайте анонс статьи со ссылкой на её полный текст

    Ошибка в тексте? Мы очень сожалеем,
    что допустили ее. Пожалуйста, выделите ее
    и нажмите на клавиатуре CTRL + ENTER.

    Кстати, такая возможность есть
    на всех страницах нашего сайта

    Хотите получать информацию о наиболее интересных материалах нашего сайта?
    Подпишитесь на рассылку E-mail
    Установите приложение на Android

    2007-2020 «Педагогическое сообщество Екатерины Пашковой — PEDSOVET.SU».
    12+ Свидетельство о регистрации СМИ: Эл №ФС77-41726 от 20.08.2010 г. Выдано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций.
    Адрес редакции: 603111, г. Нижний Новгород, ул. Раевского 15-45
    Адрес учредителя: 603111, г. Нижний Новгород, ул. Раевского 15-45
    Учредитель, главный редактор: Пашкова Екатерина Ивановна
    Контакты: +7-920-0-777-397, info@pedsovet.su
    Домен: https://pedsovet.su/
    Копирование материалов сайта строго запрещено, регулярно отслеживается и преследуется по закону.

    Отправляя материал на сайт, автор безвозмездно, без требования авторского вознаграждения, передает редакции права на использование материалов в коммерческих или некоммерческих целях, в частности, право на воспроизведение, публичный показ, перевод и переработку произведения, доведение до всеобщего сведения — в соотв. с ГК РФ. (ст. 1270 и др.). См. также Правила публикации конкретного типа материала. Мнение редакции может не совпадать с точкой зрения авторов.

    Для подтверждения подлинности выданных сайтом документов сделайте запрос в редакцию.

    сервис вебинаров

    О работе с сайтом

    Мы используем cookie.

    Публикуя материалы на сайте (комментарии, статьи, разработки и др.), пользователи берут на себя всю ответственность за содержание материалов и разрешение любых спорных вопросов с третьми лицами.

    При этом редакция сайта готова оказывать всяческую поддержку как в публикации, так и других вопросах.

    Если вы обнаружили, что на нашем сайте незаконно используются материалы, сообщите администратору — материалы будут удалены.

    Интегрированный урок (информатика + математика ) в 8-м классе по теме «Построение графиков функций в Excel»

    Как организовать дистанционное обучение во время карантина?

    Помогает проект «Инфоурок»

    Интегрированный урок (информатика + математика ) в 8-м классе по теме «Построение графиков функций в Excel »

    Кулинка Ольга Валериевна, учитель информатики и математики

    МОУ «Общеобразовательная Березниковская средняя школа»

    Цели и задачи урока:

    Повторить и обобщить знания о функции обратной пропорциональности

    Закрепить практические умения и навыки работы с электронными таблицами Excel и применить их для решения реальной задачи.

    Сделать вывод: как из графика функции получит графики и

    развивать логическое мышление;

    формировать культуру общения на уроке, работы в группах, работы на компьютерах

    Тип урока: комбинированный

    Оборудование: проектор, школьная компьютерная сеть, готовые файлы-задания на ученических компьютерах.

    Повторение материала по математике и информатике

    Работа в электронных таблицах

    Обобщение работы и выводы

    Учитель сообщает тему урока, цель урока и что учащиеся должны сделать за урок.

    Учащиеся должны обобщить данные о функции обратной пропорциональности

    Повторить знания об электронных таблицах

    Построить несколько графиков – гипербол в электронной таблице, выполнив задания в электронных книгах на своих компьютерах.

    Сделать вывод: как из графика функции получит графики и

    Учитель делит учащихся на три группы. Каждой группе дается план, по которому нужно построить ответ. Один учащийся из группы отвечает на поставленные вопросы.

    Постройте ответ по плану:

    Какую функцию называют обратной пропорциональностью?

    Какую кривую называют обратной гиперболой?

    Из скольких ветвей состоит гипербола?

    Зависит ли расположение гиперболы от значений k ?

    Как построить гиперболу?

    Ответы 1-ой группы : 1) Обратной пропорциональностью называется функция, которую можно задавать формулой вида , где х — независимая переменная и k – не равное нулю число.

    2) Кривую, являющуюся графиком обратной пропорциональности, называют гиперболой.

    3) Гипербола состоит из двух ветвей.

    4) Если к>0, то гипербола расположена в I и III координатных четвертях, если k II и IV четвертях.

    5) Для того, чтобы построить гиперболу, необходимо найти значения у, соответсвующие некоторым положительным значениям и противоположным им отрицательным значениям х. Отметить точки на координатной плоскости и плавной линией соединить полученные точки так, чтобы получилось две ветви.

    Какой документ называется Рабочей книгой?

    Из чего состоит Рабочая книга?

    Из чего состоит рабочий лист?

    Что такое адрес ячейки и какая ячейка называется активной?

    Какую информацию можно помещать в ячейки?

    Как записываются формулы в ячейки и что они могут содержать?

    Ответы 2-й группы. 1) Документ, созданный в электронной таблице, называется Рабочей книгой.

    2) Рабочая книга состоит из рабочих листов.

    3) Рабочий лист имеет табличную структуру и состоит из строк и столбцов, на их пересечении образуются ячейки таблицы.

    4) Выделенная ячейка называется активной и играет роль курсора.

    5) В ячейки можно помещать текстовую, числовую информацию и формулы.

    6) Если ячейка содержит формулу, то ее запись начинается со знака «=». Кроме

    этого формулы содержат знаки арифметических действий, круглые скобки,

    адреса ячеек и встроенные функции.

    Объясните построение графика функции в Microsoft Excel на примере графика функции

    Ответ 3-й группы (для ответа используется учительский компьютер и проектор). 1) Строим таблицу значений: в ячейки А1 и А2 вносим числа -5 и

    -4,5, Объединяем эти ячейки и, пользуясь маркером заполнения, заполняем столбец А до значения 5. В ячейку В1 вносим формулу =3/А1. Пользуясь маркером заполнения копируем формулу для всех значений х. Удаляем значения х=0, т.к. на ноль делить нельзя, и соответствующее ему значение столбца В.

    2) выполняем команды Вставка/График, выбираем нужное количество графиков (1), подписи по оси х и оси у из данного диапазона

    Работа на компьютерах.

    Учитель: На ваших Рабочих столах находится Рабочая книга График . Вам необходимо выполнить задания на четырех рабочих листах. Сравнить расположение графика функции с расположениями графиков и

    Учащиеся садятся за компьютеры. Используя Excel, выполняют задания на компьютере (приложения 1 и 2)

    По одной работе из каждого варианта передается по сети на учительский компьютер. Просматриваются и сравниваются построенные графики функций. Делается вывод о расположении гиперболы (учащиеся записывают в тетрадь):

    смещается на а влево смещается на а вправо

    Смещается на а вниз смещается на а вверх

    Подведение итогов урока.

    Учитель: С помощью графиков функций, построенных нами на компьютерах мы сделали вывод о том, как из графика функции получит графики и . Дома постройте график функции и сделайте вывод о том, как его можно получить из графика функции . Всем спасибо за урок.

    Бесплатный
    Дистанционный конкурс «Стоп коронавирус»

    • Кулинка Ольга ВалериевнаНаписать 475 12.04.2016

    Номер материала: ДБ-026046

    Добавляйте авторские материалы и получите призы от Инфоурок

    Еженедельный призовой фонд 100 000 Р

      12.04.2016 7715
      12.04.2016 579
      12.04.2016 485
      12.04.2016 708
      12.04.2016 538
      12.04.2016 398

    Не нашли то что искали?

    Вам будут интересны эти курсы:

    Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение редакции может не совпадать с точкой зрения авторов.

    Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако редакция сайта готова оказать всяческую поддержку в решении любых вопросов связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.

    Ссылка на основную публикацию
    Adblock
    detector