Oc-windows.ru

IT Новости из мира ПК
5 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Критерий согласия пирсона excel

Проверка простых гипотез критерием хи-квадрат Пирсона в EXCEL

Рассмотрим применение в MS EXCEL критерия хи-квадрат Пирсона для проверки простых гипотез.

После получения экспериментальных данных (т.е. когда имеется некая выборка ) обычно производится выбор закона распределения, наиболее хорошо описывающего случайную величину, представленную данной выборкой . Проверка того, насколько хорошо экспериментальные данные описываются выбранным теоретическим законом распределения, осуществляется с использованием критериев согласия . Нулевой гипотезой , обычно выступает гипотеза о равенстве распределения случайной величины некоторому теоретическому закону.

Сначала рассмотрим применение критерия согласия Пирсона Х 2 (хи-квадрат) в отношении простых гипотез (параметры теоретического распределения считаются известными). Затем — применение критерияв случае сложных гипотез , когда задается только форма распределения, а параметры этого распределения и значение статистики Х 2 оцениваются/рассчитываются на основании одной и той же выборки .

Примечание : Применение критерия согласия Пирсона Х 2 в отношении сложных гипотез см. статью Проверка сложных гипотез критерием хи-квадрат Пирсона в MS EXCEL .

Примечание : В англоязычной литературе процедура применения критерия согласия Пирсона Х 2 имеет название The chi-square goodness of fit test .

Напомним процедуру проверки гипотез:

  • на основе выборки вычисляется значение статистики , которая соответствует типу проверяемой гипотезы. Например, для проверки гипотезы о равенстве среднего μ некоторому заданному значению μ используется t-статистика (если стандартное отклонение не известно);
  • при условии истинности нулевой гипотезы , распределение этой статистики известно и может быть использовано для вычисления вероятностей (например, для t-статистики это распределение Стьюдента );
  • вычисленное на основе выборки значение статистики сравнивается с критическим для заданного уровня значимости значением ( α-квантилем );
  • нулевую гипотезу отвергают, если значение статистики больше критического (или если вероятность получить это значение статистики ( p-значение ) меньше уровня значимости , что является эквивалентным подходом).

Проведем проверку гипотез для различных распределений.

Дискретный случай

Предположим, что два человека играют в кости. У каждого игрока свой набор костей. Игроки по очереди кидают сразу по 3 кубика. Каждый раунд выигрывает тот, кто выкинет за раз больше шестерок. Результаты записываются. У одного из игроков после 100 раундов возникло подозрение, что кости его соперника – несимметричные, т.к. тот часто выигрывает (часто выбрасывает шестерки). Он решил проанализировать насколько вероятно такое количество исходов противника.

Примечание : Т.к. кубиков 3, то за раз можно выкинуть 0; 1; 2 или 3 шестерки, т.е. случайная величина может принимать 4 значения.

Из теории вероятности нам известно, что если кубики симметричные, то вероятность выпадения шестерок подчиняется биномиальному закону . Поэтому, после 100 раундов частоты выпадения шестерок могут быть вычислены с помощью формулы =БИНОМ.РАСП(A7;3;1/6;ЛОЖЬ)*100

В формуле предполагается, что в ячейке А7 содержится соответствующее количество выпавших шестерок в одном раунде.

Примечание : Расчеты приведены в файле примера на листе Дискретное .

Для сравнения наблюденных (Observed) и теоретических частот (Expected) удобно пользоваться гистограммой .

При значительном отклонении наблюденных частот от теоретического распределения, нулевая гипотеза о распределении случайной величины по теоретическому закону, должна быть отклонена. Т.е., если игральные кости соперника несимметричны, то наблюденные частоты будут «существенно отличаться» от биномиального распределения .

В нашем случае на первый взгляд частоты достаточно близки и без вычислений сложно сделать однозначный вывод. Применим критерий согласия Пирсона Х 2 , чтобы вместо субъективного высказывания «существенно отличаться», которое можно сделать на основании сравнения гистограмм , использовать математически корректное утверждение.

Используем тот факт, что в силу закона больших чисел наблюденная частота (Observed) с ростом объема выборки n стремится к вероятности, соответствующей теоретическому закону (в нашем случае, биномиальному закону ). В нашем случае объем выборки n равен 100.

Введем тестовую статистику , которую обозначим Х 2 :

где O l – это наблюденная частота событий, что случайная величина приняла определенные допустимые значения, E l – это соответствующая теоретическая частота (Expected). L – это количество значений, которые может принимать случайная величина (в нашем случае равна 4).

Примечание : Вышеуказанная статистика является частным случаем статистики используемой для вычисления критерия независимости хи-квадрат (см. статью Критерий независимости хи-квадрат в MS EXCEL ).

Как видно из формулы, эта статистика является мерой близости наблюденных частот к теоретическим, т.е. с помощью нее можно оценить «расстояния» между этими частотами. Если сумма этих «расстояний» «слишком велика», то эти частоты «существенно отличаются». Понятно, что если наш кубик симметричный (т.е. применим биномиальный закон ), то вероятность того, что сумма «расстояний» будет «слишком велика» будет малой. Чтобы вычислить эту вероятность нам необходимо знать распределение статистики Х 2 ( статистика Х 2 вычислена на основе случайной выборки , поэтому она является случайной величиной и, следовательно, имеет свое распределение вероятностей ).

Из многомерного аналога интегральной теоремы Муавра-Лапласа известно, что при n—>∞ наша случайная величина Х 2 асимптотически распределена по закону Х 2 с L — 1 степенями свободы.

Итак, если вычисленное значение статистики Х 2 (сумма «расстояний» между частотами) будет больше чем некое предельное значение, то у нас будет основание отвергнуть нулевую гипотезу . Как и при проверке параметрических гипотез , предельное значение задается через уровень значимости . Если вероятность того, что статистика Х 2 примет значение меньше или равное вычисленному ( p -значение ), будет меньше уровня значимости , то нулевую гипотезу можно отвергнуть.

В нашем случае, значение статистики равно 22,757. Вероятность, что статистика Х 2 примет значение больше или равное 22,757 очень мала (0,000045) и может быть вычислена по формулам =ХИ2.РАСП.ПХ(22,757;4-1) или =ХИ2.ТЕСТ(Observed; Expected)

Примечание : Функция ХИ2.ТЕСТ() специально создана для проверки связи между двумя категориальными переменными (см. статью про критерий независимости ).

Вероятность 0,000045 существенно меньше обычного уровня значимости 0,05. Так что, у игрока есть все основания подозревать своего противника в нечестности ( нулевая гипотеза о его честности отвергается).

При применении критерия Х 2 необходимо следить за тем, чтобы объем выборки n был достаточно большой, иначе будет неправомочна аппроксимация Х 2 -распределением распределения статистики Х 2 . Обычно считается, что для этого достаточно, чтобы наблюденные частоты (Observed) были больше 5. Если это не так, то малые частоты объединяются в одно или присоединяются к другим частотам, причем объединенному значению приписывается суммарная вероятность и, соответственно, уменьшается число степеней свободы Х 2 -распределения .

Для того чтобы улучшить качество применения критерия Х 2 ( увеличить его мощность ), необходимо уменьшать интервалы разбиения (увеличивать L и, соответственно, увеличивать количество степеней свободы ), однако этому препятствует ограничение на количество попавших в каждый интервал наблюдений (д.б.>5).

Примечание : Рассмотренный выше пример является частным случаем применения критерия независимости хи-квадрат (chi-square test), который позволяет определить есть ли связь между двумя категориальными переменными (см. статью Критерий независимости хи-квадрат в MS EXCEL ).

Читать еще:  Виды диаграмм и графиков в excel

СОВЕТ : О проверке других видов гипотез см. статью Проверка статистических гипотез в MS EXCEL .

Непрерывный случай

Критерий согласия Пирсона Х 2 можно применить так же в случае непрерывного распределения .

Рассмотрим некую выборку , состоящую из 200 значений. Нулевая гипотеза утверждает, что выборка сделана из стандартного нормального распределения .

Примечание : Cлучайные величины в файле примера на листе Непрерывное сгенерированы с помощью формулы =НОРМ.СТ.ОБР(СЛЧИС()) . Поэтому, новые значения выборки генерируются при каждом пересчете листа.

Как видно из диаграммы, значения выборки довольно хорошо укладываются вдоль прямой. Однако, как и в дискретном случае для проверки гипотезы применим Критерий согласия Пирсона Х 2 .

Для этого разобьем диапазон изменения случайной величины на интервалы с шагом 0,5 стандартных отклонений . Вычислим наблюденные и теоретические частоты. Наблюденные частоты вычислим с помощью функции ЧАСТОТА() , а теоретические – с помощью функции НОРМ.СТ.РАСП() .

Примечание : Как и для дискретного случая , необходимо следить, чтобы выборка была достаточно большая, а в интервал попадало >5 значений.

Вычислим статистику Х 2 и сравним ее с критическим значением для заданного уровня значимости (0,05). Т.к. мы разбили диапазон изменения случайной величины на 10 интервалов, то число степеней свободы равно 9. Критическое значение можно вычислить по формуле =ХИ2.ОБР.ПХ(0,05;9) или =ХИ2.ОБР(1-0,05;9)

На диаграмме выше видно, что значение статистики равно 8,19, что существенно выше критического значениянулевая гипотеза не отвергается.

Ниже приведена диаграмма , на которой выборка приняла маловероятное значение и на основании критерия согласия Пирсона Х 2 нулевая гипотеза была отклонена (не смотря на то, что случайные значения были сгенерированы с помощью формулы =НОРМ.СТ.ОБР(СЛЧИС()) , обеспечивающей выборку из стандартного нормального распределения ).

Нулевая гипотеза отклонена, хотя визуально данные располагаются довольно близко к прямой линии.

В качестве примера также возьмем выборку из непрерывного равномерного распределения U(-3; 3). В этом случае, даже из графика очевидно, что нулевая гипотеза должна быть отклонена.

Критерий согласия Пирсона Х 2 также подтверждает, что нулевая гипотеза должна быть отклонена.

Шаблон Excel для проверки законов распределения данных наблюдений по критерию согласия Пирсона

Рубрика: Экономика и управление

Дата публикации: 30.03.2019 2019-03-30

Статья просмотрена: 3949 раз

Библиографическое описание:

Фаюстов А. А. Шаблон Excel для проверки законов распределения данных наблюдений по критерию согласия Пирсона // Молодой ученый. — 2019. — №13. — С. 142-147. — URL https://moluch.ru/archive/251/57618/ (дата обращения: 04.04.2020).

В статье рассматривается процедура создания шаблона Excel и опыт его применения для автоматического построения гистограмм и кривых Гаусса по результатам данных экспериментальных наблюдений с одновременной оценкой согласия по критерию Пирсона в учебном процессе. Показываются преимущества данного метода перед ручным счетом по проверке рассмотренного критерия.

Ключевые слова: шаблон Excel, гистограмма, кривая распределения, критерий согласия Пирсона

В современном мире к статистике проявляется большой интерес, поскольку это отличный инструмент для анализа и принятия решений, а также это отличное средство для поиска причин нарушений процесса и их устранения. Статистический анализ применим во многих сферах, где существуют большие массивы данных: металлургии, а также в экономике, биологии, политике, социологии и т. д. Рассмотрим использование некоторых средств статистического анализа, а именно — гистограмм для обработки больших массивов данных.

Целью первичной обработки экспериментальных наблюдений обычно является выбор закона распределения, наиболее хорошо описывающего случайную величину, выборку которой мы наблюдали. Проверка того, насколько хорошо наблюдаемая выборка описывается теоретическим законом, осуществляется с использованием различных критериев согласия. Целью проверки гипотезы о согласии опытного распределения с теоретическим является стремление удостовериться в том, что данная модель теоретического закона не противоречит наблюдаемым данным, и использование ее не приведет к существенным ошибкам при вероятностных расчетах. Некорректное использование критериев согласия может приводить к необоснованному принятию или необоснованному отклонению проверяемой гипотезы [1].

Сходимость результатов наблюдений можно оценить наиболее полно, если их распределение является нормальным. Поэтому исключительно важную роль при обработке результатов наблюдений играет проверка нормальности распределения.

Эта задача представляет собой частный случай более общей проблемы, заключающейся в подборе теоретической функции распределения, в некотором смысле наилучшим образом согласующейся с опытными данными. Сама процедура проверки нормальности распределения относится к распространенной стандартной и довольно тривиальной задаче обработки данных и достаточно подробно и широко описана в различной литературе по метрологии и статистической обработке данных измерений [2- 4].

Данные, получаемые в результате измерений при контроле технологических процессов, оценке характеристик различных объектов и др. для дальнейшей обработки желательно представлять в виде теоретического распределения, максимально соответствующего экспериментальному распределению. Проверку гипотезы о виде функции распределения в настоящее время проводят по различным критериям согласия — Пирсона, Колмогорова, Смирнова и другим в соответствии с новыми разработанными нормативными документами — рекомендациями по стандартизации [5, 6].

Наиболее часто используется критерий Пирсона  2 . Однако применение критериев согласия требует обычно довольно значительного объёма данных. Так, критерий Пирсона обычно рекомендуется использовать при объёме выборки не менее 50…100. Поэтому при небольшом объёме выборки проверку гипотезы о виде функции распределения проводят приближёнными методами — графическим методом или по асимметрии и эксцессу. Применение критерия Пирсона для ручной обработки данных очень подробно было изложено в известной работе [2]. Как свидетельствует опыт проверок согласия экспериментальных данных с теоретическими по различным критериям, эта процедура является очень трудоемкой, требует некоторой усидчивости и особого внимания при обработке от исследователя, как правило, не исключает ошибок в работе и не вызывает особого энтузиазма у выполняющего эту работу.

Решение задач статистического анализа связано со значительными объемами вычислений. Проведение реальных многовариантных статистических расчетов в ручном режиме является очень громоздкой и трудоемкой задачей и без использования компьютера в настоящее время практически невозможно. В настоящее время разработано достаточное количество универсальных и специализированных программных средств для статистического анализа и обработки экспериментальных данных. Автор предлагает к рассмотрению достаточно простой и эффективный шаблон для быстрого построения гистограммы и кривой нормального распределения.

По виду гистограммы можно предположить (принять гипотезу) о том, что выборка случайных чисел подчиняется нормальному закону распределения. Далее, для того чтобы убедиться в правильности выбранной гипотезы надо, первое — построить график гипотетического нормального закона распределения, выбрав в качестве параметров (математического ожидания и среднего квадратического отклонения) их оценки (среднее и стандартное отклонение), и совместить график гипотетического распределения с графиком гистограммы. И, второе — используя в данном случае, как пример, критерий согласия Пирсона, установить справедливость выбранной гипотезы.

Читать еще:  Как защитить выделенные ячейки в excel

Рассмотрим порядок действий при работе с критерием Пирсона в среде Excel.

1. Полученные в результате измерений значения 100 случайных результатов измерений внести в ячейки A1:A100 шаблона Excel и приступить к построению гистограммы на основе данных, назначая длину интервала (карман) и выбирая необходимое число интервалов.

2. Затем на этом же листе создается таблица, в которую посредством формул Excel вносятся основные расчетные величины, используемые для построения гистограммы и кривой Гаусса: среднее арифметическое, стандартное отклонение, минимальное и максимальное значения выборки, размах, величина кармана (рис. 1).

Рис. 1. Фрагмент таблицы с исходными данными

В ячейку D2 вносится формула =СРЗНАЧ(A1:A100), D3: =СТАНДОТКЛОН(A1:A100), D4: =МИН(A1:A100), D5: =МАКС(A1:A100), D6: =D5-D4, D7: =D6/D8. В ячейку D8 вводится число интервалов, которое для числа измерений, равным 100, может быть принято от 7 до 12.

Для оценки оптимального для нашего массива данных количества интервалов можно воспользоваться формулой Стерджесса: k

1+3,322lgN, где N— количество всех значений величины. Например, для N = 100, n = 7,6, которое должно быль округлено до целого числа, округляем до n = 8.

3. Интервал карманов вычисляют так: разность максимального и минимального значений массива, деленная на количество интервалов: .

4. Теперь в каждой ячейке шаг за шагом прибавляем полученное значение ширины кармана: сначала к минимальному значению нашего массива (ячейка D4), затем в следующей ячейке ниже — к полученной сумме и т. д. Так постепенно доходим до максимального значения. Таким образом, мы и построили интервалы карманов в виде столбца значений.

Интервалом считается следующий диапазон: (i-1; i] или i шаблон Excel, гистограмма, кривая распределения, критерий согласия Пирсона

Похожие статьи

Решение задач анализа и синтеза на имитационных моделях.

Значения случайной величины могут быть получены в результате статистических

Изучение работы новых машин и станков должно базироваться на статистических данных, собранных в

Рис. 2. Гистограммы для длительностей интервалов времени распиловки бревен на.

Вычисление статистических показателей с использованием.

Для анализа распределения необходимы числовые значения статистических показателей, позволяющие оценить колебания значений изучаемого признака и взаимосвязь его с другими признаками: — частотные показатели (частота и относительная частота)

Обработка результатов имитационного моделирования.

В каждой колонке определить максимальное, минимальное значение в ряду и количество значений ряда.

Критерий появления грубых ошибок.

По результатам моделирование построены гистограммы относительных отклонений оценок.

Прецизионный генератор псевдослучайных чисел

Критерием согласованности будем называть функционал, характеризующий степень согласия выборки значений С.В. и её закона распределения. В ходе анализа критериев согласованности было отмечено две группы критериев, отличающиеся самим принципом.

Аналитическая модель префиксного дерева на основе.

Первоначальный вид распределения значения индекса представлен гистограммой на рисунке 1

В силу аппроксимации значения индекса нормальным законом распределения, а также

Прикладная статистика. Правила проверки согласия опытного распределения с теоретическим.

Проверка статистических гипотез в психолого-педагогических.

Задачей анализа полученных данных является изучение частоты встречаемости тех или иных значения признака в эксперименте. Эти данные дают предварительную информацию о виде распределения признака: о том, какие значения встречаются реже, а какие чаще, насколько.

Анализ процедур генерации ключей криптографических алгоритмов.

Мы получили значение критерия «хи-квадрат» для экспериментальных данных.

Проверим возможности применения критерия Стьюдента: Нормальность распределения признака для первой группы с

Рассмотрим графический тест «Гистограмма распределения элементов».

Анализ методов распознавания образов | Статья в журнале.

Распределение – апостериорное распределение значений w, при условии получения

Пример распределения Гаусса для различных параметров µ и σ показан ниже.

Если же мы все же сможем подсчитать значение функции правдоподобия, то и сможем найти значение.

Непараметрические робастные алгоритмы обработки данных

Проблема обработки данных, содержащих резко выделяющиеся значения, давно известна. Даже одно такое незамеченное значение может значительно снизить точность анализа данных, а иногда и совсем его обесценить. Представление о том, какие значения считать резко.

Идентификация многосвязных объектов в условиях частичной.

В общем случае критерий оптимизации выбирается в виде математического ожидания от вектор-функции, аргументом которой является разность между выходом

Из накладываемых условий обычно следует, что в среднем значение совпадает со значением градиента в точке .

Функция ПИРСОН расчета коэффициента корреляции Пирсона в Excel

Функция ПИРСОН (вводить следует PEARSON на английском) предназначена для вычисления коэффициента корреляции Пирсона r . Данную функцию используют в работе в том случае, когда необходимо отразить степень линейной зависимости между двумя массивами данных. В Excel имеется несколько функций с помощью которых можно получить такой же результат, однако универсальность и простота функции Пирсон делают выбор в ее пользу.

Как работает функция ПИРСОН в Excel?

Рассмотрим пример расчета корреляции Пирсона между двумя массивами данных при помощи функции PEARSON в MS EXCEL. Первый массив представляет собой значения температур, второй давление в определенный летний период. Пример заполненной таблицы изображен на рисунке:

Задача следующая: необходимо определить взаимосвязь между температурой и давлением за июнь месяц.

Пример решения с функцией ПИРСОН при анализе в Excel

  1. Выберем ячейку С17 в которой должен будет посчитаться критерий Пирсона как результат и нажмем кнопку мастер функций «fx» или комбинацию горячих клавиш (SHIFT+F3). Откроется мастер функций, в поле Категория необходимо выбрать «Статистические». В списке статистических функций выбрать PEARSON и нажать Ok:
  2. В меню аргументов выбрать Массив 1, в примере это утренняя температура воздуха, а затем массив 2 – атмосферное давление.
  3. В результате в ячейке С17 получим коэффициент корреляции Пирсона. В нашем случае он отрицательный и приблизительно равен -0,14.

Данный показатель -0,14 по Пирсону, который вернула функция, говорит об неблагоприятной зависимости температуры и давления в раннее время суток.

Функция ПИРСОН пошаговая инструкция

Коэффициент корреляции является самым удобным показателем сопряженности количественных признаков.

Задача: Определить линейный коэффициент корреляции Пирсона.

  1. В таблице приведены данные для группы курящих людей. Первый массив х — представляет собой возраст курящего, второй массив y представляет собой количество сигарет, выкуренных в день.
  2. Выберем ячейку В4 в которой должен будет посчитаться результат и нажмем кнопку мастер функций fx (SHIFT+F3).
  3. В группе Статистические выберем функцию PEARSON.
  4. Выделим Массив 1 – возраст курящего, затем Массив 2 – число сигарет, выкуренных в день.
  5. Нажмем кнопку ОК и увидим критерий нормального распределения Пирсона в ячейке В4.

Таким образом, по результату вычисления статистическим выводом эксперимента выявлена отрицательная зависимость между возрастом и количеством выкуренных сигарет в день.

Корреляционный анализ по Пирсону в Excel

Задача: школьникам были даны тесты на наглядное и вербальное мышление. Измерялось среднее время решения заданий теста в секундах. Психолога интересует вопрос: существует ли взаимосвязь между временем решения этих задач?

Пример решения: представим исходные данные в виде таблицы:

  1. Переходим курсором в ячейку F2. Откроем мастер функций fx (SHIFT+F3) или вводим вручную.
  2. Выберем функцию PEARSON.
  3. Выделим мышкой Массив1, затем Массив 2.
  4. Нажмем ОК и в ячейке F2 получим критерий согласия Пирсона.

Интерпретация результата вычисления по Пирсону

Величина коэффициента линейной корреляции Пирсона не может превышать +1 и быть меньше чем -1. Эти два числа +1 и -1 – являются границами для коэффициента корреляции. Когда при расчете получается величина большая +1 или меньшая -1 – следовательно, произошла ошибка в вычислениях.

Если коэффициент корреляции по модулю оказывается близким к 1, то это соответствует высокому уровню связи между переменными.

Если же получен знак минус, то большей величине одного признака соответствует меньшая величина другого. Иначе говоря, при наличии знака минус, увеличению одной переменной (признака, значения) соответствует уменьшение другой переменной. Такая зависимость носит название обратно пропорциональной зависимости. Эти положения очень важно четко усвоить для правильной интерпретации полученной корреляционной зависимости.

Решения задач на проверку статистических гипотез

Проверка статистических гипотез включает в себя большой пласт задач математической статистики. Зная некоторые характеристики выборки (или имея просто выборочные данные), мы можем проверять гипотезы о виде распределении случайной величины или ее параметрах (примеры этих задач на странице Проверка гипотез о параметрах распределения).

Ниже в примерах мы разберем основные учебные задачи на проверку гипотез о виде распределения. Чаще всего для этого используется критерий согласия $chi^2$ Пирсона, а также критерий Колмогорова-Смирнова.

Критерий согласия Пирсона (или критерий $chi^2$ — «хи квадрат») — наиболее часто употребляемый для проверки гипотезы о принадлежности некоторой выборки теоретическому закону распределения (в учебных задачах чаще всего проверяют «нормальность» — распределение по нормальному закону).

В учебных задачах обычно используется следующий алгоритм:

  1. Выбор теоретического закона распределения (обычно задан заранее, если не задан — анализируем выборку, например с помощью гистограммы относительных частот, которая имитирует плотность распределения).
  2. Оцениваем параметры распределения по выборке (для этого вычисляется математическое ожидание и дисперсия): $a, sigma$ для нормального, $a,b$ — для равномерного, $lambda$ — для распределения Пуассона и т.д.
  3. Вычисляются теоретические значения частот (через теоретические вероятности попадания в интервал) и сравниваются с исходными (выборочными).
  4. Анализируется значение статистики $chi^2$ и делается вывод о соответствии (или нет) теоретическому закону распределения.

Подробные примеры на разные распределения и критерии вы найдете ниже.

Примеры решений на проверку гипотез онлайн

Критерий Пирсона, нормальное распределение

Пример 1. Используя критерий Пирсона, при уровне значимости 0,05 проверить, согласуется ли гипотеза о нормальном распределении генеральной совокупности X по результатам выборки:
X 0,3 0,5 0,7 0,9 1,1 1,3 1,5 1,7 1,9 2,1 2,3
N 7 9 28 27 30 26 21 25 22 9 5

Пример 2. Были исследованы 200 готовых деталей на отклонения истинного размера от расчетного. Сгруппированные данные приведены в следующей таблице:
По данному статистическому ряду построить гистограмму. По виду гистограммы выдвинуть гипотезу о виде закона распределения (например, предположить, что исследуемая величина имеет нормальный закон распределения). Подобрать параметры закона распределения (равные их оценкам на основе опытных данных). На том же графике построить функцию плотности вероятности, соответствующую выдвинутой гипотезе. С помощью критерия согласия проверить, согласуется ли гипотеза с опытными данными. Уровень значимости взять, например, равным 0,05.

Критерий Пирсона, распределение по закону Пуассона

Пример 3. Отдел технического контроля проверил n партий однотипных изделий и установил, что число нестандартных изделий в одной партии имеет эмпирическое распределение, приведенное в таблице, в одной строке которой указано количество xi нестандартных изделий в одной партии, а в другой строке – количество ni партий, содержащих xi нестандартных изделий. Требуется при уровне значимости α0,05 проверить гипотезу о том, что случайная величина X (число нестандартных изделий в одной партии) распределена по закону Пуассона.

Пример 4. В результате обследования 150 человек были получены данные о количестве приобретаемых за месяц цветных иллюстрированных журналов. Соответствует ли данное распределение закону редких событий Пуассона?

Критерий Пирсона, распределение по показательному закону

Пример 5. В итоге испытаний 1000 элементов на время безотказной работы (час.) получено распределение, приведенное в таблице. Требуется при уровне значимости проверить гипотезу о том, что данные в генеральной совокупности распределены по показательному закону.
Время безотказной работы 0-10 10-20 20-30 30-40 40-50 50-60 60-70
Число отказавших элементов 365 245 150 100 70 45 25

Критерий Пирсона, распределение по равномерному закону

Пример 6. В некоторой местности в течение 300 суток регистрировалась среднесуточная температура воздуха. В итоге наблюдений было получено эмпирическое распределение, приведенное в таблице 40 (в первом столбце указан интервал температуры в градусах, во втором столбце – частота $n_i$, т.е. количество дней, среднесуточная температура которых принадлежит этому интервалу).
Требуется при уровне значимости 0,05 проверить гипотезу о том, что среднесуточная температура воздуха распределена равномерно.

Критерий Колмогорова

Пример 7. Имеются выборочные данные о числе сделок, заключенных фирмой с частными лицами в течение месяца:
— число заключенных сделок 0-10 10-20 20-30 30-40 40-50
— число частных лиц 23 24 11 9 3
Проверить при уровне значимости 0,05, используя критерий согласия Колмогорова, гипотезу о нормальном законе распределения.

Пример 8. В течение месяца выборочно осуществлялась проверка торговых точек города по продаже овощей. Результаты двух проверок по недовесам покупателям одного вида овощей приведены в таблице:Можно ли считать при уровне значимости 0,05, что недовесы овощей являются устойчивым и закономерным процессом при продаже овощей в данном городе (т.е. описываются одной и той же функцией распределения)?

Критерий Вилкоксона

Пример 9. Имеется выборка прибыли коммерческой фирмы за 14 недель до (хi) и после (yi) проведения новой экономической политики. На уровне значимости 0,05 по критерию Вилкоксона проверить гипотезу о том, что введение новой экономической политики в среднем привело к увеличению производительности.

Критерий $chi^2$ для двух выборок

Пример 10. Используя критерий «хи-квадрат» при уровне значимости 0,05, проверить, существует ли зависимость уровня интеллектуального развития учеников от типа школы по результатам обследования 100 сельских и 100 городских школьников:
Тип школы Уровень интеллектуального развития
низкий нормальный высокий
Городская 25 50 25
Сельская 52 41 7

Полезные ссылки

Решебник по математической статистике

Ищете решенное задание на проверку статистических гипотез? Попробуйте тут:

Ссылка на основную публикацию
Adblock
detector