Oc-windows.ru

IT Новости из мира ПК
13 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Ошибка аппроксимации в excel как посчитать

Аппроксимация в Excel

(Обратите внимание на дополнительный раздел от 04.06.2017 в конце статьи.)

Учет и контроль! Те, кому за 40 должны хорошо помнить этот лозунг из эпохи построения социализма и коммунизма в нашей стране.

Но без хорошо налаженного учета невозможно эффективное функционирование ни страны, ни области, ни предприятия, ни домашнего хозяйства при любой общественно-экономической формации общества! Для составления прогнозов и планов деятельности и развития необходимы исходные данные. Где их брать? Только один достоверный источник – это ваши статистические учетные данные предыдущих периодов времени.

Учитывать результаты своей деятельности, собирать и записывать информацию, обрабатывать и анализировать данные, применять результаты анализа для принятия правильных решений в будущем должен, в моем понимании, каждый здравомыслящий человек. Это есть ничто иное, как накопление и рациональное использование своего жизненного опыта. Если не вести учет важных данных, то вы через определенный период времени их забудете и, начав заниматься этими вопросами вновь, вы опять наделаете те же ошибки, что делали, когда впервые этим занимались.

«Мы, помню, 5 лет назад изготавливали до 1000 штук таких изделий в месяц, а сейчас и 700 еле-еле собираем!». Открываем статистику и видим, что 5 лет назад и 500 штук не изготавливали…

«Во сколько обходится километр пробега твоего автомобиля с учетом всех затрат?» Открываем статистику – 6 руб./км. Поездка на работу – 107 рублей. Дешевле, чем на такси (180 рублей) более чем в полтора раза. А бывали времена, когда на такси было дешевле…

«Сколько времени требуется для изготовления металлоконструкций уголковой башни связи высотой 50 м?» Открываем статистику – и через 5 минут готов ответ…

«Сколько будет стоить ремонт комнаты в квартире?» Поднимаем старые записи, делаем поправку на инфляцию за прошедшие годы, учитываем, что в прошлый раз купили материалы на 10% дешевле рыночной цены и – ориентировочную стоимость мы уже знаем…

Ведя учет своей профессиональной деятельности, вы всегда будете готовы ответить на вопрос начальника: «Когда. ». Ведя учет домашнего хозяйства, легче спланировать расходы на крупные покупки, отдых и прочие расходы в будущем, приняв соответствующие меры по дополнительному заработку или по сокращению необязательных расходов сегодня.

В этой статье я на простом примере покажу, как можно обрабатывать собранные статистические данные в Excel для возможности дальнейшего использования при прогнозировании будущих периодов.

Аппроксимация в Excel статистических данных аналитической функцией.

Производственный участок изготавливает строительные металлоконструкции из листового и профильного металлопроката. Участок работает стабильно, заказы однотипные, численность рабочих колеблется незначительно. Есть данные о выпуске продукции за предыдущие 12 месяцев и о количестве переработанного в эти периоды времени металлопроката по группам: листы, двутавры, швеллеры, уголки, трубы круглые, профили прямоугольного сечения, круглый прокат. После предварительного анализа исходных данных возникло предположение, что суммарный месячный выпуск металлоконструкций существенно зависит от количества уголков в заказах. Проверим это предположение.

Прежде всего, несколько слов об аппроксимации. Мы будем искать закон – аналитическую функцию, то есть функцию, заданную уравнением, которое лучше других описывает зависимость общего выпуска металлоконструкций от количества уголкового проката в выполненных заказах. Это и есть аппроксимация, а найденное уравнение называется аппроксимирующей функцией для исходной функции, заданной в виде таблицы.

1. Включаем Excel и помещаем на лист таблицу с данными статистики.

2. Далее строим и форматируем точечную диаграмму, в которой по оси X задаем значения аргумента – количество переработанных уголков в тоннах. По оси Y откладываем значения исходной функции – общий выпуск металлоконструкций в месяц, заданные таблицей.

О том, как построить подобную диаграмму, подробно рассказано в статье «Как строить графики в Excel?».

3. «Наводим» мышь на любую из точек на графике и щелчком правой кнопки вызываем контекстное меню (как говорит один мой хороший товарищ — работая в незнакомой программе, когда не знаешь, что делать, чаще щелкай правой кнопкой мыши…). В выпавшем меню выбираем «Добавить линию тренда…».

4. В появившемся окне «Линия тренда» на вкладке «Тип» выбираем «Линейная».

5. Далее на вкладке «Параметры» ставим 2 галочки и нажимаем «ОК».

6. На графике появилась прямая линия, аппроксимирующая нашу табличную зависимость.

Мы видим кроме самой линии уравнение этой линии и, главное, мы видим значение параметра R 2 – величины достоверности аппроксимации! Чем ближе его значение к 1, тем наиболее точно выбранная функция аппроксимирует табличные данные!

7. Строим линии тренда, используя степенную, логарифмическую, экспоненциальную и полиномиальную аппроксимации по аналогии с тем, как мы строили линейную линию тренда.

Лучше всех из выбранных функций аппроксимирует наши данные полином второй степени, у него максимальный коэффициент достоверности R 2 .

Однако хочу вас предостеречь! Если вы возьмете полиномы более высоких степеней, то, возможно, получите еще лучшие результаты, но кривые будут иметь замысловатый вид…. Здесь важно понимать, что мы ищем функцию, которая имеет физический смысл. Что это означает? Это означает, что нам нужна аппроксимирующая функция, которая будет выдавать адекватные результаты не только внутри рассматриваемого диапазона значений X, но и за его пределами, то есть ответит на вопрос: «Какой будет выпуск металлоконструкций при количестве переработанных за месяц уголков меньше 45 и больше 168 тонн!» Поэтому я не рекомендую увлекаться полиномами высоких степеней, да и параболу (полином второй степени) выбирать осторожно!

Итак, нам необходимо выбрать функцию, которая не только хорошо интерполирует табличные данные в пределах диапазона значений X=45…168, но и допускает адекватную экстраполяцию за пределами этого диапазона. Я выбираю в данном случае логарифмическую функцию, хотя можно выбрать и линейную, как наиболее простую. В рассматриваемом примере при выборе линейной аппроксимации в excel ошибки будут больше, чем при выборе логарифмической, но не на много.

Читать еще:  Построение трехмерной поверхности в excel

8. Удаляем все линии тренда с поля диаграммы, кроме логарифмической функции. Для этого щелкаем правой кнопкой мыши по ненужным линиям и в выпавшем контекстном меню выбираем «Очистить».

9. В завершении добавим к точкам табличных данных планки погрешностей. Для этого правой кнопкой мыши щелкаем на любой из точек на графике и в контекстном меню выбираем «Формат рядов данных…» и настраиваем данные на вкладке «Y-погрешности» так, как на рисунке ниже.

10. Затем щелкаем по любой из линий диапазонов погрешностей правой кнопкой мыши, выбираем в контекстном меню «Формат полос погрешностей…» и в окне «Формат планок погрешностей» на вкладке «Вид» настраиваем цвет и толщину линий.

Аналогичным образом форматируются любые другие объекты диаграммы в Excel!

Окончательный результат диаграммы представлен на следующем снимке экрана.

Итоги.

Результатом всех предыдущих действий стала полученная формула аппроксимирующей функции y=-172,01*ln (x)+1188,2. Зная ее, и количество уголков в месячном наборе работ, можно с высокой степенью вероятности (±4% — смотри планки погрешностей) спрогнозировать общий выпуск металлоконструкций за месяц! Например, если в плане на месяц 140 тонн уголков, то общий выпуск, скорее всего, при прочих равных составит 338±14 тонн.

Для повышения достоверности аппроксимации статистических данных должно быть много. Двенадцать пар значений – это маловато.

Из практики скажу, что хорошим результатом следует считать нахождение аппроксимирующей функции с коэффициентом достоверности R 2 >0,87. Отличный результат – при R 2 >0,94.

На практике бывает трудно выделить один самый главный определяющий фактор (в нашем примере – масса переработанных за месяц уголков), но если постараться, то в каждой конкретной задаче его всегда можно найти! Конечно, общий выпуск продукции за месяц реально зависит от сотни факторов, для учета которых необходимы существенные трудозатраты нормировщиков и других специалистов. Только результат все равно будет приблизительным! Так стоит ли нести затраты, если есть гораздо более дешевое математическое моделирование!

В этой статье я лишь прикоснулся к верхушке айсберга под названием сбор, обработка и практическое использование статистических данных. О том удалось, или нет, мне расшевелить ваш интерес к этой теме, надеюсь узнать из комментариев и рейтинга статьи в поисковиках.

Затронутый вопрос аппроксимации функции одной переменной имеет широкое практическое применение в разных сферах жизни. Но гораздо большее применение имеет решение задачи аппроксимации функции нескольких независимых переменных…. Об этом и не только читайте в следующих статьях на блоге.

Подписывайтесь на анонсы статей в окне, расположенном в конце каждой статьи или в окне вверху страницы.

Не забывайте подтверждать подписку кликом по ссылке в письме, которое придет к вам на указанную почту (может прийти в папку «Спам»).

С интересом прочту Ваши комментарии, уважаемые читатели! Пишите!

P.S. (04.06.2017)

Высокоточная красивая замена табличных данных простым уравнением.

Вас не устраивают полученные точность аппроксимации (R 2 2 =0,9963.

Средняя ошибка аппроксимации

По семи территориям Уральского района за 199Х г. известны значения двух признаков.

РайонРасходы на покупку продовольственных товаров в общих расходах, %, уСреднедневная заработная плата одного работающего, руб., х
Удмуртская респ.68,845,1
Свердловская обл.61,259,0
Башкортостан59,957,2
Челябинская обл.56,761,8
Пермская обл.55,058,8
Курганская обл.54,347,2
Оренбургская обл.49,355,2
Требуется:
1. Для характеристики зависимости у от х рассчитать параметры следующих функций:
а) линейной;
б) степенной;
в) показательной;
г) равносторонней гиперболы (так же нужно придумать как предварительно линеаризовать данную модель).
2. Оценить каждую модель через среднюю ошибку аппроксимации Аср и F-критерий Фишера.

Решение проводим при помощь онлайн калькулятора Линейное уравнение регрессии.
а) линейное уравнение регрессии;
Использование графического метода.
Этот метод применяют для наглядного изображения формы связи между изучаемыми экономическими показателями. Для этого в прямоугольной системе координат строят график, по оси ординат откладывают индивидуальные значения результативного признака Y, а по оси абсцисс — индивидуальные значения факторного признака X.
Совокупность точек результативного и факторного признаков называется полем корреляции.

Для наших данных система уравнений имеет вид

Из первого уравнения выражаем а и подставим во второе уравнение
Получаем b = -0.35, a = 76.88
Уравнение регрессии:
y = -0.35 x + 76.88

xyx 2y 2x • yy(x)(y i -y cp ) 2(y-y(x)) 2|y — y x |:y
45,168,82034,014733,443102,8861,28119,1256,610,1094
5961,234813745,443610,856,4710,9822,40,0773
57,259,93271,843588,013426,2857,094,067,90,0469
61,856,73819,243214,893504,0655,51,411,440,0212
58,8553457,443025323456,548,332,360,0279
47,254,32227,842948,492562,9660,5512,8639,050,1151
55,249,33047,042430,492721,3657,7873,7171,940,172
384,3405,221338,4123685,7622162,34405,2230,47201,710,5699

Примечание: значения y(x) находятся из полученного уравнения регрессии:
y(45.1) = -0.35*45.1 + 76.88 = 61.28
y(59) = -0.35*59 + 76.88 = 56.47
. . .

Ошибка аппроксимации
Оценим качество уравнения регрессии с помощью ошибки абсолютной аппроксимации. Средняя ошибка аппроксимации — среднее отклонение расчетных значений от фактических:

Читать еще:  Webcam запись видео

F-статистики. Критерий Фишера.
Проверка значимости модели регрессии проводится с использованием F-критерия Фишера, расчетное значение которого находится как отношение дисперсии исходного ряда наблюдений изучаемого показателя и несмещенной оценки дисперсии остаточной последовательности для данной модели.
Если расчетное значение с k1=(m) и k2=(n-m-1) степенями свободы больше табличного при заданном уровне значимости, то модель считается значимой.

где m – число факторов в модели.
Оценка статистической значимости парной линейной регрессии производится по следующему алгоритму:
1. Выдвигается нулевая гипотеза о том, что уравнение в целом статистически незначимо: H: R 2 =0 на уровне значимости α.
2. Далее определяют фактическое значение F-критерия:

где m=1 для парной регрессии.
3. Табличное значение определяется по таблицам распределения Фишера для заданного уровня значимости, принимая во внимание, что число степеней свободы для общей суммы квадратов (большей дисперсии) равно 1 и число степеней свободы остаточной суммы квадратов (меньшей дисперсии) при линейной регрессии равно n-2.
4. Если фактическое значение F-критерия меньше табличного, то говорят, что нет основания отклонять нулевую гипотезу.
В противном случае, нулевая гипотеза отклоняется и с вероятностью (1-α) принимается альтернативная гипотеза о статистической значимости уравнения в целом.
Табличное значение критерия со степенями свободы k1=1 и k2=5, Fkp = 6.61
Поскольку фактическое значение F b
в) показательная регрессия;
г) модель равносторонней гиперболы.
Система нормальных уравнений.

Для наших данных система уравнений имеет вид
7a + 0.1291b = 405.2
0.1291a + 0.0024b = 7.51
Из первого уравнения выражаем а и подставим во второе уравнение
Получаем b = 1054.67, a = 38.44
Уравнение регрессии:
y = 1054.67 / x + 38.44
Ошибка аппроксимации.
Оценим качество уравнения регрессии с помощью ошибки абсолютной аппроксимации.

Аппроксимация функции одной переменной

Калькулятор использует методы регрессии для аппроксимации функции одной переменной.

Данный калькулятор по введенным данным строит несколько моделей регрессии: линейную, квадратичную, кубическую, степенную, логарифмическую, гиперболическую, показательную, экспоненциальную. Результаты можно сравнить между собой по корреляции, средней ошибке аппроксимации и наглядно на графике. Теория и формулы регрессий под калькулятором.

Аппроксимация функции одной переменной

Линейная регрессия

Коэффициент линейной парной корреляции:

Средняя ошибка аппроксимации:

Квадратичная регрессия

Система уравнений для нахождения коэффициентов a, b и c:

Коэффициент корреляции:
,
где

Средняя ошибка аппроксимации:

Кубическая регрессия

Система уравнений для нахождения коэффициентов a, b, c и d:

Коэффициент корреляции, коэффициент детерминации, средняя ошибка аппроксимации — используются те же формулы, что и для квадратичной регрессии.

Степенная регрессия

Коэффициент корреляции, коэффициент детерминации, средняя ошибка аппроксимации — используются те же формулы, что и для квадратичной регрессии.

Показательная регрессия

Коэффициент корреляции, коэффициент детерминации, средняя ошибка аппроксимации — используются те же формулы, что и для квадратичной регрессии.

Гиперболическая регрессия

Коэффициент корреляции, коэффициент детерминации, средняя ошибка аппроксимации — используются те же формулы, что и для квадратичной регрессии.

Логарифмическая регрессия

Коэффициент корреляции, коэффициент детерминации, средняя ошибка аппроксимации — используются те же формулы, что и для квадратичной регрессии.

Экспоненциальная регрессия

Коэффициент корреляции, коэффициент детерминации, средняя ошибка аппроксимации — используются те же формулы, что и для квадратичной регрессии.

Вывод формул

Сначала сформулируем задачу:
Пусть у нас есть неизвестная функция y=f(x), заданная табличными значениями (например, полученными в результате опытных измерений).
Нам необходимо найти функцию заданного вида (линейную, квадратичную и т. п.) y=F(x), которая в соответствующих точках принимает значения, как можно более близкие к табличным.
На практике вид функции чаще всего определяют путем сравнения расположения точек с графиками известных функций.

Полученная формула y=F(x), которую называют эмпирической формулой, или уравнением регрессии y на x, или приближающей (аппроксимирующей) функцией, позволяет находить значения f(x) для нетабличных значений x, сглаживая результаты измерений величины y.

Для того, чтобы получить параметры функции F, используется метод наименьших квадратов. В этом методе в качестве критерия близости приближающей функции к совокупности точек используется суммы квадратов разностей значений табличных значений y и теоретических, рассчитанных по уравнению регрессии.

Таким образом, нам требуется найти функцию F, такую, чтобы сумма квадратов S была наименьшей:

Рассмотрим решение этой задачи на примере получения линейной регрессии F=ax+b.
S является функцией двух переменных, a и b. Чтобы найти ее минимум, используем условие экстремума, а именно, равенства нулю частных производных.

Используя формулу производной сложной функции, получим следующую систему уравнений:

Для функции вида частные производные равны:
,

Подставив производные, получим:

Откуда, выразив a и b, можно получить формулы для коэффициентов линейной регрессии, приведенные выше.
Аналогичным образом выводятся формулы для остальных видов регрессий.

Средняя относительная ошибка аппроксимации

Курсовая работа

по дисциплине «Эконометрика»

«Комплексный анализ взаимосвязи финансово-экономических показателей деятельности предприятий»

студент группы ЭЭТ-312

1. Составление корреляционной матрицы. Отбор факторов

2. Построение уравнения множественной линейной регрессии. Интерпретация параметров уравнения

3. Коэффициент детерминации, множественный коэффициент корреляции

4.Оценка качества уравнения множественной линейной регрессии

4.1.Средняя относительная ошибка аппроксимации

4.2.Проверка статистической значимости уравнения множественной регрессии в целом с помощью F-критерия Фишера

4.3.Проверка статистической значимости параметров уравнения множественной регрессии. Интервальные оценки параметров

5.Применение регрессионной модели

5.2.Частные коэффициенты эластичности и средние частные коэффициенты эластичности

6.Анализ остатков регрессионной модели (проверка предпосылок теоремы Гаусса-Маркова)

6.1.Оценки математического ожидания остатков

6.2.Проверка наличия автокорреляции в остатках

7.Критерий Грегори Чоу

Постановка задачи

Заданы значения 6 показателей, характеризующих экономическую деятельность 53 предприятий. Требуется:

1. Составить корреляционную матрицу. Скорректировать набор независимых переменных (отобрать 2 фактора).

2. Построить уравнение множественной линейной регрессии. Дать интерпретацию параметров уравнения.

3. Найти коэффициент детерминации, множественный коэффициент корреляции. Сделать выводы.

Читать еще:  Электронные таблицы ms excel

4. Оценить качество уравнения множественной линейной регрессии:

4.1. Найти среднюю относительную ошибку аппроксимации. Сделать выводы.

4.2. Проверить статистическую значимость уравнения множественной регрессии в целом с помощью F-критерия Фишера. Сделать выводы

4.3. Проверить статистическую значимость параметров уравнения множественной регрессии. Построить интервальные оценки параметров. Сделать выводы.

5. Применение регрессионной модели:

5.1. Используя построенное уравнение, дать точечный прогноз. Найти значение исследуемого параметра y, если значение первого фактора (наиболее тесно связанного с у) составит 110% от его среднего значения, значение второго фактора составит 80% от его среднего значения. Дать экономическую интерпретацию результата.

5.2. Найти частные коэффициенты эластичности и средние частные коэффициенты эластичности. Интерпретировать результаты. Сделать выводы.

6. Провести анализ остатков регрессионной модели (проверить требования теоремы Гаусса-Маркова):

6.1. Найти оценки математического ожидания остатков.

6.2. Проверить наличие автокорреляции в остатках. Сделать вывод.

7. Разделите выборку на две равные части. Рассматривая первые и последние наблюдения как независимые выборки, проверить гипотезу о возможности объединения их в единую выборку по критерию Грегори-Чоу.

Составление корреляционной матрицы. Отбор факторов

№ предприятияY3X10X12X5X7X13
13,261,45167,690,781,37
10,161,3186,10,751,49
13,721,37220,450,681,44
12,851,65169,30,71,42
10,631,9139,530,621,35
9,121,6840,410,761,39
25,831,94102,960,731,16
23,391,8937,020,711,27
14,681,9445,740,691,16
10,052,0640,070,731,25
13,991,9645,440,681,13
9,681,0241,080,741,1
10,031,85136,140,661,15
9,130,8842,390,721,23
5,370,6237,390,681,39
9,861,09101,780,771,38
12,621,647,550,781,35
5,021,5332,610,781,42
21,181,4103,250,811,37
25,172,2238,950,791,41
19,41,3281,320,771,35
1,4867,260,781,48
6,570,6859,920,721,24
14,192,3107,340,791,40
15,811,37512,60,771,45
5,231,5153,810,81,4
7,991,4380,830,711,28
17,51,8259,420,791,33
17,162,6236,960,761,22
14,541,7591,430,781,28
6,241,5417,160,621,47
12,082,2527,290,751,27
9,491,07184,330,711,51
9,281,4458,420,741,46
11,421,459,40,651,27
10,311,3149,630,661,43
8,651,12391,270,841,5
10,941,16258,620,741,35
9,870,8875,660,751,41
6,141,07123,680,751,47
12,931,2437,210,791,35
9,781,4953,370,721,4
13,222,0332,870,71,2
17,291,8445,630,661,15
7,111,2248,410,691,09
22,491,7213,580,711,26
12,141,7563,990,731,36
15,251,46104,550,651,15
31,341,6222,110,821,87
11,561,4725,760,81,17
30,141,3829,520,831,61
19,711,4141,990,71,34
23,561,3978,110,741,22

1.Составить корреляционную матрицу. Скорректировать набор независимых переменных (отобрать 2 фактора).

Рассмотрим результативный признак Y3 и факторные признаки Х10, X12, Х5, Х7, Х13.

Составим корреляционную матрицу с помощью опции «Анализ данных→Корреляция» в MS Excel:

Y3X10X12X5X7X13
Y31,00000,36530,01850,28910,17360,0828
X100,36531,0000-0,2198-0,0166-0,2061-0,0627
X120,0185-0,21981,00000,23920,37960,6308
X50,2891-0,01660,23921,00000,41470,0883
X70,1736-0,20610,37960,41471,00000,1939
X130,0828-0,06270,63080,08830,19391,0000

Отбираем 2 фактора по критериям:

1) связь Y и X должна быть максимальной

2) связь между Xми должна быть наименьшей

r_Y3,X10=0,3653 связь между Y3 и X10 слабая
r_Y3,X12=0,0185 связь между Y3 и X12 практически отсутствует
r_Y3,X5=0,2891 связь между Y3 и X5 слабая
r_Y3,X7=0,1736 связь между Y3 и Х7 практически отсутствует
r_Y3,X13=0,0828 связь между Y3 и Х13 практически отсутствует
r_X10,X12=-0,2198 связь между Х10 и Х12 слабая обратная
r_X10,X5=-0,0166 связь между Х10 и Х5 практически отсутствует обратная
r_X10,X7=-0,2061 связь между Х10 и Х7 слабая обратная
r_X10,X13=-0,0627 связь между Х10 и Х13 практически отсутствует обратная

Таким образом, в следующих пунктах работа будет производиться с факторами X10, X5.

Построение уравнения множественной линейной регрессии. Интерпретация параметров уравнения.

2. Построить уравнение множественной линейной регрессии. Дать интерпретацию параметров уравнения.

Составим регрессионную модель с помощью пакета анализа «Анализ данных→Регрессия» в MS Excel:

Коэффициенты
Y-20,7163
X 105,7169
X 534,9321

Уравнение регрессии будет выглядеть следующим образом:

1) b10 положительный;

2) b5 положительный;

Коэффициент детерминации, множественный коэффициент корреляции

3. Найти коэффициент детерминации, множественный коэффициент корреляции. Сделать выводы.

В регрессионном анализе, выполненном с помощью пакета анализа «Анализ данных→Регрессия» в MS Excel, найдём таблицу «Регрессионная статистика»:

Регрессионная статистика
Множественный R0,469667774
R-квадрат0,220587818
Нормированный R-квадрат0,189411331
Стандартная ошибка5,669239125
Наблюдения

Множественный R-связь между Y3 и X10,X5 слабая

R-квадрат-22,05% вариации признака Y объясняется вариацией признаков X10 и X5

Оценка качества уравнения множественной линейной регрессии

4. Оценить качество уравнения множественной линейной регрессии:

Средняя относительная ошибка аппроксимации

4.1. Найти среднюю относительную ошибку аппроксимации. Сделать выводы.

Рассчитаем прогнозные значения для каждого наблюдения или воспользуемся столбцом «Предсказанное У» в таблице «Вывод остатка» в регрессионном анализе, выполненном с помощью пакета анализа «Анализ данных→Регрессия» в MS Excel)

Вычислим относительные ошибки для каждого наблюдения по формуле:

Вычислим среднюю относительную ошибку аппроксимации по формуле:

Ссылка на основную публикацию
Adblock
detector