Oc-windows.ru

IT Новости из мира ПК
21 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Полный факторный эксперимент в excel

Факторный и дисперсионный анализ в Excel с автоматизацией подсчетов

Чтобы проанализировать изменчивость признака под воздействием контролируемых переменных, применяется дисперсионный метод.

Для изучения связи между значениями – факторный метод. Рассмотрим подробнее аналитические инструменты: факторный, дисперсионный и двухфакторный дисперсионный метод оценки изменчивости.

Дисперсионный анализ в Excel

Условно цель дисперсионного метода можно сформулировать так: вычленить из общей вариативности параметра 3 частные вариативности:

  • 1 – определенную действием каждого из изучаемых значений;
  • 2 – продиктованную взаимосвязью между исследуемыми значениями;
  • 3 – случайную, продиктованную всеми неучтенными обстоятельствами.

В программе Microsoft Excel дисперсионный анализ можно выполнить с помощью инструмента «Анализ данных» (вкладка «Данные» — «Анализ»). Это надстройка табличного процессора. Если надстройка недоступна, нужно открыть «Параметры Excel» и включить настройку для анализа.

Работа начинается с оформления таблицы. Правила:

  1. В каждом столбце должны быть значения одного исследуемого фактора.
  2. Столбцы расположить по возрастанию/убыванию величины исследуемого параметра.

Рассмотрим дисперсионный анализ в Excel на примере.

Психолог фирмы проанализировал с помощью специальной методики стратегии поведения сотрудников в конфликтной ситуации. Предполагается, что на поведение влияет уровень образования (1 – среднее, 2 – среднее специальное, 3 – высшее).

Внесем данные в таблицу Excel:

  1. Открываем диалоговое окно нашего аналитического инструмента. В раскрывшемся списке выбираем «Однофакторный дисперсионный анализ» и нажимаем ОК.
  2. В поле «Входной интервал» ввести ссылку на диапазон ячеек, содержащихся во всех столбцах таблицы.
  3. «Группирование» назначить по столбцам.
  4. «Параметры вывода» — новый рабочий лист. Если нужно указать выходной диапазон на имеющемся листе, то переключатель ставим в положение «Выходной интервал» и ссылаемся на левую верхнюю ячейку диапазона для выводимых данных. Размеры определятся автоматически.
  5. Результаты анализа выводятся на отдельный лист (в нашем примере).

Значимый параметр залит желтым цветом. Так как Р-Значение между группами больше 1, критерий Фишера нельзя считать значимым. Следовательно, поведение в конфликтной ситуации не зависит от уровня образования.

Факторный анализ в Excel: пример

Факторным называют многомерный анализ взаимосвязей между значениями переменных. С помощью данного метода можно решить важнейшие задачи:

  • всесторонне описать измеряемый объект (причем емко, компактно);
  • выявить скрытые переменные значения, определяющие наличие линейных статистических корреляций;
  • классифицировать переменные (определить взаимосвязи между ними);
  • сократить число необходимых переменных.

Рассмотрим на примере проведение факторного анализа. Допустим, нам известны продажи каких-либо товаров за последние 4 месяца. Необходимо проанализировать, какие наименования пользуются спросом, а какие нет.

  1. Посмотрим, за счет, каких наименований произошел основной рост по итогам второго месяца. Если продажи какого-то товара выросли, положительная дельта – в столбец «Рост». Отрицательная – «Снижение». Формула в Excel для «роста»: =ЕСЛИ((C2-B2)>0;C2-B2;0), где С2-В2 – разница между 2 и 1 месяцем. Формула для «снижения»: =ЕСЛИ(J3=0;B2-C2;0), где J3 – ссылка на ячейку слева («Рост»). Во втором столбце – сумма предыдущего значения и предыдущего роста за вычетом текущего снижения.
  2. Рассчитаем процент роста по каждому наименованию товара. Формула: =ЕСЛИ(J3/$I$11=0;-K3/$I$11;J3/$I$11). Где J3/$I$11 – отношение «роста» к итогу за 2 месяц, ;-K3/$I$11 – отношение «снижения» к итогу за 2 месяц.
  3. Выделяем область данных для построения диаграммы. Переходим на вкладку «Вставка» — «Гистограмма».
  4. Поработаем с подписями и цветами. Уберем накопительный итог через «Формат ряда данных» — «Заливка» («Нет заливки»). С помощью данного инструментария меняем цвет для «снижения» и «роста».

Теперь наглядно видно, продажи какого товара дают основной рост.

Двухфакторный дисперсионный анализ в Excel

Показывает, как влияет два фактора на изменение значения случайной величины. Рассмотрим двухфакторный дисперсионный анализ в Excel на примере.

Читать еще:  Как открыть формулы в excel

Задача. Группе мужчин и женщин предъявляли звук разной громкости: 1 – 10 дБ, 2 – 30 дБ, 3 – 50 дБ. Время ответа фиксировали в миллисекундах. Необходимо определить, влияет ли пол на реакцию; влияет ли громкость на реакцию.

  1. Переходим на вкладку «Данные» — «Анализ данных» Выбираем из списка «Двухфакторный дисперсионный анализ без повторений».
  2. Заполняем поля. В диапазон должны войти только числовые значения.
  3. Результат анализа выводится на новый лист (как было задано).

Та как F-статистики (столбец «F») для фактора «Пол» больше критического уровня F-распределения (столбец «F-критическое»), данный фактор имеет влияние на анализируемый параметр (время реакции на звук).

Теория Планирования Эксперимента

Главная

Полный факторный эксперимент

Первый этап планирования эксперимента для получения линейной модели основан на варьировании факторов на двух уровнях. В этом случае, если число факторов известно, можно сразу найти число опытов, необходимое для реализации всех возможных со­четаний уровней факторов. Простая формула, которая для этого используется, уже приводилась: , где N – число опытов, k – число факторов, 2 – число уровней. В общем случае эксперимент, в котором реализуются все­возможные сочетания уровней факторов, называется полным факторным экспериментом. Если число уровней каждого фактора равно двум, то имеем полный факторный экспе­римент типа 2 k .

Нетрудно написать все сочетания уровней в экспе­рименте с двумя факторами. Напомним, что в планиро­вании эксперимента используются кодированные значения факторов: +1 и –1 (часто для простоты записи единицы опускают). Условия эксперимента можно записать в виде таблицы, где строки соответствуют различным опытам, а столбцы – значениям факторов. Будем называть такие таблицы матрицами планирования эксперимента.

Матрица планирования для двух факторов приведена ниже

Каждый столбец в матрице планирования называют вектор-столбцом, а каждую строку – вектор-строкой. Таким образом, мы имеем 2 вектор-столбца независимых переменных и один вектор-столбец парамет­ра оптимизации.

Если для двух факторов все возможные комбинации уровней легко найти прямым перебором (или просто запомнить), то с ростом числа факторов возникает необ­ходимость в некотором приеме построения матриц. Из многих возможных обычно используется три приема, основанные на переходе от матриц меньшей размерности к матри­цам большей размерности. Рассмотрим первый. При добав­лении нового фактора каждая комбинация уровней исход­ного плана встречается дважды: в сочетании с нижним и верхним уровнями нового фактора. Отсюда естественно появляется прием: записать исходный план для одного уровня нового фактора, а затем повторить его для другого уровня. Вот как это выглядит при переходе от экспери­мента 2 2 к 2 3 :

Этот прием распространяется на построение матриц любой размерности.

Рассмотрим второй прием. Для этого введем правило перемножения столбцов матрицы. При построчном перемно­жении двух столбцов матрицы произведение единиц с одноименными знаками дает +1, а с разноименными –1. Воспользовавшись этим правилом, получим для случая, который мы рассматриваем, вектор-столбец произведения x 1 x 2 в исходном плане. Далее повторим еще раз исходный план, а у столбца произведений знаки поменяем на обрат­ные. Этот прием тоже можно перенести на построение матриц любой размерности, однако он сложнее, тем первый.

Третий прием основан на правиле чередования знаков. В первом столбце знаки меняются поочередно, во втором столбце они чередуются через два, в третьем – через 4, в четвертом – через 8 и т. д. по степеням двойки.

Свойства полного факторного эксперимента типа 2 k

Мы научились строить матрицы планирования полных факторных экспериментов с факторами на двух уровнях. Теперь выясним, какими общими свойствами эти матрицы обладают независимо от числа факторов. Говоря о свойствах матриц, мы имеем в виду те из них, которые определяют качество модели. Ведь эксперимент и плани­руется для того, чтобы получить модель, обладающую некоторыми оптимальными свойствами. Это значит, что оценки коэффициентов модели должны быть наилучшими и что точность предсказания параметра оптимизации не должна зависеть от направления в факторном пространстве, ибо заранее неясно, куда предстоит двигаться в поисках оптимума.

Читать еще:  Excel в ворд онлайн

Два свойства следуют непосредственно из построения матрицы. Первое из них – симметричность относительно центра эксперимента – формулируется следующим образом: алгебраическая сумма элементов вектор-столбца каждого фактора равна нулю, или, где j – номер фактора, N – число опытов, i = 1, 2, . k .

Второе свойство – так называемое условие нормировки – формулируется следующим образом: сумма квадратов элементов каждого столбца равна числу опытов, или . Это следствие того, что значения факторов в матрице задаются +1 и –1.

Это свойства отдельных столбцов матрицы планирования. Теперь остановимся на свойстве совокупности столбцов. Сумма почленных произведений любых двух вектор-столбцов матрицы равна нулю, или

.

Это важное свойство называется ортогональностью матрицы планирования.

Последнее, четвертое свойство называется ротатабельностью, т. е. точки в матрице планирования подбираются так, что точность предсказания значений параметра оптимизации одинакова на равных расстояниях от центра эксперимента и не зависит от направления.

Полный факторный эксперимент и математическая модель

Для движения к точке оптимума нам нужна линейная модель . Наша цель – найти по результатам эксперимента значения неизвестных коэффициентов модели. До сих пор, говоря о линейной модели, мы не останавливались на важном вопросе о статистической оценке ее коэффициентов. Теперь необходимо сделать ряд замечаний по этому поводу. Можно утверждать, что эксперимент проводится для проверки гипотезы о том, что линейная модель адекватна. Греческие буквы использованы для обозначения «истинных» генеральных значений соответствующих неизвестных. Эксперимент, содержащий конечное число опытов, позволяет только получить выборочные оценки для коэффициентов уравнения . Их точность и надежность зависят от свойств выборки и нуждаются в статистической проверке. Как производится такая проверка, будет показано ниже. А пока займемся вычислением оценок коэффициентов. Их можно вычислить по простой формуле

,

обоснование которой будет приведено ниже. Воспользуемся этой формулой для подсчёта коэффициентов и :

,

.

Благодаря кодированию факторов расчет ко­эффициентов превратился в простую арифметическую про­цедуру. Для подсчета коэффициента используется вектор-столбец х1, а для – столбец x 2 . Остается неясным, как найти . Если уравнение справедливо, то оно верно и для средних арифметических значений переменных: . Но в силу свойства симметрии . Следовательно, . Мы пока­зали, что есть среднее арифметическое значений пара­метра оптимизации. Чтобы его получить, необходимо сло­жить все y и разделить на число опытов. Чтобы привести, эту процедуру в соответствие с формулой для вычисления коэффициентов, в матрицу планирования удобно ввести вектор-столбец фиктивной переменной x , которая прини­мает во всех опытах значение +1. Это было уже учтено в записи формулы, где j принимало значения от 0 до k .

Теперь у нас есть все необходимое, чтобы найти неизвестные коэффициенты линейной модели

.

Коэффициенты при независимых переменных указывают на силу влияния факторов. Чем больше численная величина коэффициента, тем большее влияние оказывает фактор. Если коэффициент имеет знак плюс, то с увеличением зна­чения фактора параметр оптимизации увеличивается, а если минус, то уменьшается. Величина коэффициента соответ­ствует вкладу данного фактора в величину параметра опти­мизации при переходе фактора с нулевого уровня на верх­ний или нижний.

Иногда у добно оценивать вклад фактора при переходе от нижнего уровня к верхнему уровню. Вклад, определенный таким образом, называется вкладом фактора (иногда его называют основным или главным эффектом). Он численно равен удвоенному коэффициенту. Для качественных факторов, варьируемых на двух уровнях, основной уровень не имеет физического смысла. Поэтому понятие «эффект фактора» является здесь естественным.

Читать еще:  Отчет об устойчивости excel смысл

Планируя эксперимент, на первом этапе мы стремимся получить линейную модель. Однако у нас нет гарантии, что в выбранных интервалах варьирования процесс описывается линейной моделью. Существуют способы проверки пригодности линейной модели (проверка адекватности). А если модель нелинейна, как количественно оценить нелинейность, пользуясь полным факторным экспериментом?

Один из часто встречающихся видов нелинейности связан с тем, что эффект одного фактора зависит от уровня, на котором находится другой фактор. В этом случае гово­рят, что имеет место эффект взаимодействия двух факторов. Полный факторный эксперимент позволяет количественно оценивать эффекты взаимодействия. Для этого надо, пользуясь правилом перемножения столбцов, получить стол­бец произведения двух факторов. При вычислении коэффициента, соответствующего эффекту взаимодействия, с новым вектор-столбцом можно обращаться так же, как с вектор-столбцом любого фактора. Для полного факторного эксперимента 2 2 матрица планирования с учетом эффекта взаимодействия будет иметь вид

Полный факторный эксперимент в excel

ФАКТОРНЫЙ ЭКСПЕРИМЕНТ, ФАКТОРНЫЙ АНАЛИЗ, МНОГОФАКТОРНЫЙ ЭКСПЕРИМЕНТ, МНОГОФАКТОРНЫЙ АНАЛИЗ (МФЭ)

В современной научной деятельности стала очень востребованной методика факторной обработки (анализа) экспериментальных данных. Факторное планирование (многофакторный эксперимент, факторный эксперимент, факторный анализ) удобно применять, когда необходимо определить зависимость какой-то одной величины от нескольких одновременно (y = f(x,z…z)). Методика МФЭ отлично подходит везде, где есть массив экспериментальных данных, который изменяется в определенных диапазонах (пределах варьирования) можно попробовать методику многофакторного эксперимента. Поверьте, я знаю, сколько усилий и материальных затрат, стоит провести экспериментальные исследования в рамках научной деятельности, особенно в современных условиях. Только вот может оказаться, что эксперимент нужно проводить еще и еще раз. Хорошо, если экспериментальные исследования проводятся в лабораторных условиях, в здании. Намного сложнее, если опыты проводятся в поле и привязаны к определенным условиям (например, ко времени уборки урожая, к посеву растений и т.п.). В этом случае сроки окончания научной работы (читай – защиты диссертации) отодвигаются еще, как минимум, на год. Согласитесь, все это нервирует, особенно в конце выполнения научной работы (диссертации). Литература по многофакторному эксперименту написана сложным для восприятия стилем, ее особенностью является отсутствие логически увязанной, пошаговой, четкой методики для выполнения факторного эксперимент (факторного анализа, многофакторного эксперимента (МФЭ). Программы для выполнения МФЭ также сложны для быстрого осваивания. Можно, конечно, освоить методику полного факторного эксперимента (факторного анализа) , а также программы для его выполнения. Но, как правило, аспиранты не располагают достаточным для этого количеством времени, ни желанием. На освоение методики полного многофакторного эксперимента (факторного эксперимента, факторного анализа) может понадобиться несколько месяцев. Если у Вас нет для этого времени и желания, то Вы попали на нужный сайт. Когда научные исследования подходят к финалу (читай – к защите), хочется побыстрее пройти этот важный и серьезный период жизни. Можно конечно, обойтись в научной работе и без факторного планирования. Причинами, побудившими Вас посетить этот сайт, могут быть:

        1. Желание сделать серьезную и наполненную главу диссертации или части
          научной работы.
        2. Решение Вашего научного руководителя обработать экспериментальные
          данные именно многофакторным экспериментом.
        3. «Как все, так и я».

В любом случае, в кратчайшие сроки мы выполним для Вас обработку экспериментальных данных методом полного факторного эксперимента (факторного анализа) .

МЫ ВЫПОЛНИМ ДЛЯ ВАС СЛЕДУЩУЮ РАБОТУ:

Ссылка на основную публикацию
Adblock
detector